Unknown

Dataset Information

0

4-Acetoxyphenol Prevents RPE Oxidative Stress-Induced Necrosis by Functioning as an NRF2 Stabilizer.


ABSTRACT:

Purpose

Oxidative stress has been suggested to be a major risk factor for the pathogenesis of AMD. Retinal pigment epithelial (RPE) cells are essential for maintaining the homeostasis of the retina, and RPE cell death and the resultant photoreceptor apoptosis have been observed in dry AMD, especially in geographic atrophy. The purpose of this article was to identify and repurpose the Food and Drug Administration-approved natural compound 4-Acetoxyphenol (4-AC), and to evaluate its effect and mechanism in protecting against oxidative stress-induced RPE necrosis.

Methods

We exposed ARPE-19 cells to tert-Butyl hydroperoxide (tBHP) after pretreatment with 4-AC, and measured cell viability by MTT assay. Aggregation of RIPK3 and HMGB1 nuclear release were analyzed by transfected reporter genes. Reactive oxygen species (ROS) were measured using a commercially available ROS detection system. The importance of the NRF2/NQO1/HO-1 pathway in mediating 4-AC function was corroborated by siRNA studies, qRT-PCR, and immunostaining.

Results

We have identified a natural antioxidant, 4-AC, which demonstrates strong abilities to protect RPE cells from oxidative stress-induced necrosis. Mechanistically, 4-AC blocked the increase of cellular ROS induced by oxidative stress, and upregulated NQO1 and HO-1 genes by stabilizing and inducing the nuclear translocation of NRF2 transcription factor. The NQO1, HO-1, and NRF2 were further shown to be required for 4-AC protection of RPE cells from death induced by tBHP. The tBHQ, an NRF2 stabilizer, consistently mimicked the protective effect of 4-AC against tBHP-induced RPE death.

Conclusions

The compound 4-AC protects ARPE-19 cells from oxidative stress-induced necrosis through upregulation of NQO1 and HO-1 genes by stabilization of NRF2.

SUBMITTER: Hanus J 

PROVIDER: S-EPMC4525684 | biostudies-literature | 2015 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

4-Acetoxyphenol Prevents RPE Oxidative Stress-Induced Necrosis by Functioning as an NRF2 Stabilizer.

Hanus Jakub J   Kolkin Alexander A   Chimienti Julia J   Botsay Sara S   Wang Shusheng S  

Investigative ophthalmology & visual science 20150801 9


<h4>Purpose</h4>Oxidative stress has been suggested to be a major risk factor for the pathogenesis of AMD. Retinal pigment epithelial (RPE) cells are essential for maintaining the homeostasis of the retina, and RPE cell death and the resultant photoreceptor apoptosis have been observed in dry AMD, especially in geographic atrophy. The purpose of this article was to identify and repurpose the Food and Drug Administration-approved natural compound 4-Acetoxyphenol (4-AC), and to evaluate its effect  ...[more]

Similar Datasets

| S-EPMC7530060 | biostudies-literature
| S-EPMC6812120 | biostudies-literature
| S-EPMC10044972 | biostudies-literature
| S-EPMC3778956 | biostudies-literature
| S-EPMC5033602 | biostudies-literature
| S-EPMC4420921 | biostudies-literature
| S-EPMC6306411 | biostudies-literature
| S-EPMC7840486 | biostudies-literature
| S-EPMC4742120 | biostudies-literature