Unknown

Dataset Information

0

Biosynthesis of Squalene from Farnesyl Diphosphate in Bacteria: Three Steps Catalyzed by Three Enzymes.


ABSTRACT: Squalene (SQ) is an intermediate in the biosynthesis of sterols in eukaryotes and a few bacteria and of hopanoids in bacteria where they promote membrane stability and the formation of lipid rafts in their hosts. The genes for hopanoid biosynthesis are typically located on clusters that consist of four highly conserved genes-hpnC, hpnD, hpnE, and hpnF-for conversion of farnesyl diphosphate (FPP) to hopene or related pentacyclic metabolites. While hpnF is known to encode a squalene cyclase, the functions for hpnC, hpnD, and hpnE are not rigorously established. The hpnC, hpnD, and hpnE genes from Zymomonas mobilis and Rhodopseudomonas palustris were cloned into Escherichia coli, a bacterium that does not contain genes homologous to hpnC, hpnD, and hpnE, and their functions were established in vitro and in vivo. HpnD catalyzes formation of presqualene diphosphate (PSPP) from two molecules of FPP; HpnC converts PSPP to hydroxysqualene (HSQ); and HpnE, a member of the amine oxidoreductase family, reduces HSQ to SQ. Collectively the reactions catalyzed by these three enzymes constitute a new pathway for biosynthesis of SQ in bacteria.

SUBMITTER: Pan JJ 

PROVIDER: S-EPMC4527182 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Biosynthesis of Squalene from Farnesyl Diphosphate in Bacteria: Three Steps Catalyzed by Three Enzymes.

Pan Jian-Jung JJ   Solbiati Jose O JO   Ramamoorthy Gurusankar G   Hillerich Brandan S BS   Seidel Ronald D RD   Cronan John E JE   Almo Steven C SC   Poulter C Dale CD  

ACS central science 20150101 2


Squalene (SQ) is an intermediate in the biosynthesis of sterols in eukaryotes and a few bacteria and of hopanoids in bacteria where they promote membrane stability and the formation of lipid rafts in their hosts. The genes for hopanoid biosynthesis are typically located on clusters that consist of four highly conserved genes-<i>hpnC</i>, <i>hpnD</i>, <i>hpnE</i>, and <i>hpnF</i>-for conversion of farnesyl diphosphate (FPP) to hopene or related pentacyclic metabolites. While <i>hpnF</i> is known  ...[more]

Similar Datasets

| S-EPMC2774786 | biostudies-literature
| S-EPMC2516946 | biostudies-literature
| S-EPMC4284702 | biostudies-literature
| S-EPMC1134910 | biostudies-other
| S-EPMC6863160 | biostudies-literature
2011-05-13 | GSE29267 | GEO
2011-07-07 | GSE30403 | GEO
2011-05-13 | E-GEOD-29267 | biostudies-arrayexpress
2011-07-07 | E-GEOD-30403 | biostudies-arrayexpress
| S-EPMC10175749 | biostudies-literature