Unknown

Dataset Information

0

Effects of the properties of short peptides conjugated with cell-penetrating peptides on their internalization into cells.


ABSTRACT: Peptides, especially intracellular functional peptides that can play a particular role inside a cell, have attracted attention as promising materials to control cell fate. However, hydrophilic materials like peptides are difficult for cells to internalize. Therefore, the screening and design of intracellular functional peptides are more difficult than that of extracellular ones. An effective high-throughput screening system for intracellular functional peptides has not been reported. Here, we demonstrate a novel peptide array system for screening intracellular functional peptides, in which both cell-penetrating peptide (CPP) domain and photo-cleavable linkers are used. By using this screening system, we determined how the cellular uptake properties of CPP-conjugated peptides varied depending on the properties of the conjugated peptides. We found that the internalization ability of CPP-conjugated peptides varied greatly depending on the property of the conjugated peptides, and anionic peptides drastically decreased the uptake ability. We summarized our data in a scatter diagram that plots hydrophobicity versus isoelectric point (pI) of conjugated peptides. These results define a peptide library suitable for screening of intracellular functional peptides. Thus, our system, including the diagram, is a promising tool for searching biological active molecules such as peptide-based drugs.

SUBMITTER: Matsumoto R 

PROVIDER: S-EPMC4530456 | biostudies-literature | 2015 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Effects of the properties of short peptides conjugated with cell-penetrating peptides on their internalization into cells.

Matsumoto Ryo R   Okochi Mina M   Shimizu Kazunori K   Kanie Kei K   Kato Ryuji R   Honda Hiroyuki H  

Scientific reports 20150810


Peptides, especially intracellular functional peptides that can play a particular role inside a cell, have attracted attention as promising materials to control cell fate. However, hydrophilic materials like peptides are difficult for cells to internalize. Therefore, the screening and design of intracellular functional peptides are more difficult than that of extracellular ones. An effective high-throughput screening system for intracellular functional peptides has not been reported. Here, we de  ...[more]

Similar Datasets

| S-EPMC6163455 | biostudies-literature
| S-EPMC9720253 | biostudies-literature
| S-EPMC9028392 | biostudies-literature
| S-EPMC9419563 | biostudies-literature
| S-EPMC5408925 | biostudies-literature
| S-EPMC7934871 | biostudies-literature
| S-EPMC2797166 | biostudies-literature
| S-EPMC5491906 | biostudies-other
| S-EPMC3196123 | biostudies-literature
| S-EPMC5298241 | biostudies-literature