Unknown

Dataset Information

0

Galactinol synthase transcriptional profile in two genotypes of Coffea canephora with contrasting tolerance to drought.


ABSTRACT: Increased synthesis of galactinol and raffinose family oligosaccharides (RFOs) has been reported in vegetative tissues in response to a range of abiotic stresses. In this work, we evaluated the transcriptional profile of a Coffea canephora galactinol synthase gene (CcGolS1) in two clones that differed in tolerance to water deficit in order to assess the contribution of this gene to drought tolerance. The expression of CcGolS1 in leaves was differentially regulated by water deficit, depending on the intensity of stress and the genotype. In clone 109A (drought-susceptible), the abundance of CcGolS1 transcripts decreased upon exposure to drought, reaching minimum values during recovery from severe water deficit and stress. In contrast, CcGolS1 gene expression in clone 14 (drought-tolerant) was stimulated by water deficit. Changes in galactinol and RFO content did not correlate with variation in the steady-state transcript level. However, the magnitude of increase in RFO accumulation was higher in the tolerant cultivar, mainly under severe water deficit. The finding that the drought-tolerant coffee clone showed enhanced accumulation of CcGolS1 transcripts and RFOs under water deficit suggests the possibility of using this gene to improve drought tolerance in this important crop.

SUBMITTER: Santos TB 

PROVIDER: S-EPMC4530651 | biostudies-literature | 2015 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Galactinol synthase transcriptional profile in two genotypes of Coffea canephora with contrasting tolerance to drought.

Santos Tiago Benedito Dos TB   de Lima Rogério Barbosa RB   Nagashima Getúlio Takashi GT   Petkowicz Carmen Lucia de Oliveira CL   Carpentieri-Pípolo Valéria V   Pereira Luiz Filipe Protasio LF   Domingues Douglas Silva DS   Vieira Luiz Gonzaga Esteves LG  

Genetics and molecular biology 20150501 2


Increased synthesis of galactinol and raffinose family oligosaccharides (RFOs) has been reported in vegetative tissues in response to a range of abiotic stresses. In this work, we evaluated the transcriptional profile of a Coffea canephora galactinol synthase gene (CcGolS1) in two clones that differed in tolerance to water deficit in order to assess the contribution of this gene to drought tolerance. The expression of CcGolS1 in leaves was differentially regulated by water deficit, depending on  ...[more]

Similar Datasets

| S-EPMC4814561 | biostudies-literature
| S-EPMC3398449 | biostudies-literature
2014-12-01 | GSE46617 | GEO
| S-EPMC7786106 | biostudies-literature
| S-EPMC7278351 | biostudies-literature
2021-11-05 | GSE187416 | GEO
| S-EPMC4875703 | biostudies-literature
| S-EPMC4261967 | biostudies-literature
| S-EPMC5633756 | biostudies-literature
2019-03-26 | PXD008977 | Pride