Unknown

Dataset Information

0

DNA break-induced sumoylation is enabled by collaboration between a SUMO ligase and the ssDNA-binding complex RPA.


ABSTRACT: Upon genome damage, large-scale protein sumoylation occurs from yeast to humans to promote DNA repair. Currently, the underlying mechanism is largely unknown. Here we show that, upon DNA break induction, the budding yeast SUMO ligase Siz2 collaborates with the ssDNA-binding complex RPA (replication protein A) to induce the sumoylation of recombination factors and confer damage resistance. Both RPA and nuclease-generated ssDNA promote Siz2-mediated sumoylation. Mechanistically, the conserved Siz2 interaction with RPA enables Siz2 localization to damage sites. These findings provide a molecular basis for recruiting SUMO ligases to the vicinity of their substrates to induce sumoylation upon DNA damage.

SUBMITTER: Chung I 

PROVIDER: S-EPMC4536307 | biostudies-literature | 2015 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

DNA break-induced sumoylation is enabled by collaboration between a SUMO ligase and the ssDNA-binding complex RPA.

Chung Inn I   Zhao Xiaolan X  

Genes & development 20150801 15


Upon genome damage, large-scale protein sumoylation occurs from yeast to humans to promote DNA repair. Currently, the underlying mechanism is largely unknown. Here we show that, upon DNA break induction, the budding yeast SUMO ligase Siz2 collaborates with the ssDNA-binding complex RPA (replication protein A) to induce the sumoylation of recombination factors and confer damage resistance. Both RPA and nuclease-generated ssDNA promote Siz2-mediated sumoylation. Mechanistically, the conserved Siz2  ...[more]

Similar Datasets

| S-EPMC4583052 | biostudies-literature
| S-EPMC4227788 | biostudies-literature
| S-EPMC3334497 | biostudies-literature
| S-EPMC6375638 | biostudies-literature
| S-EPMC3083237 | biostudies-literature
| S-EPMC11339404 | biostudies-literature
| S-EPMC4758896 | biostudies-literature
| S-EPMC5417823 | biostudies-literature
| S-EPMC2664011 | biostudies-literature
| S-EPMC8591536 | biostudies-literature