Unknown

Dataset Information

0

Meteorologically Driven Simulations of Dengue Epidemics in San Juan, PR.


ABSTRACT: Meteorological factors influence dengue virus ecology by modulating vector mosquito population dynamics, viral replication, and transmission. Dynamic modeling techniques can be used to examine how interactions among meteorological variables, vectors and the dengue virus influence transmission. We developed a dengue fever simulation model by coupling a dynamic simulation model for Aedes aegypti, the primary mosquito vector for dengue, with a basic epidemiological Susceptible-Exposed-Infectious-Recovered (SEIR) model. Employing a Monte Carlo approach, we simulated dengue transmission during the period of 2010-2013 in San Juan, PR, where dengue fever is endemic. The results of 9600 simulations using varied model parameters were evaluated by statistical comparison (r2) with surveillance data of dengue cases reported to the Centers for Disease Control and Prevention. To identify the most influential parameters associated with dengue virus transmission for each period the top 1% of best-fit model simulations were retained and compared. Using the top simulations, dengue cases were simulated well for 2010 (r2 = 0.90, p = 0.03), 2011 (r2 = 0.83, p = 0.05), and 2012 (r2 = 0.94, p = 0.01); however, simulations were weaker for 2013 (r2 = 0.25, p = 0.25) and the entire four-year period (r2 = 0.44, p = 0.002). Analysis of parameter values from retained simulations revealed that rain dependent container habitats were more prevalent in best-fitting simulations during the wetter 2010 and 2011 years, while human managed (i.e. manually filled) container habitats were more prevalent in best-fitting simulations during the drier 2012 and 2013 years. The simulations further indicate that rainfall strongly modulates the timing of dengue (e.g., epidemics occurred earlier during rainy years) while temperature modulates the annual number of dengue fever cases. Our results suggest that meteorological factors have a time-variable influence on dengue transmission relative to other important environmental and human factors.

SUBMITTER: Morin CW 

PROVIDER: S-EPMC4537107 | biostudies-literature | 2015 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Meteorologically Driven Simulations of Dengue Epidemics in San Juan, PR.

Morin Cory W CW   Monaghan Andrew J AJ   Hayden Mary H MH   Barrera Roberto R   Ernst Kacey K  

PLoS neglected tropical diseases 20150814 8


Meteorological factors influence dengue virus ecology by modulating vector mosquito population dynamics, viral replication, and transmission. Dynamic modeling techniques can be used to examine how interactions among meteorological variables, vectors and the dengue virus influence transmission. We developed a dengue fever simulation model by coupling a dynamic simulation model for Aedes aegypti, the primary mosquito vector for dengue, with a basic epidemiological Susceptible-Exposed-Infectious-Re  ...[more]

Similar Datasets

| S-EPMC7567393 | biostudies-literature
| S-EPMC10993837 | biostudies-literature
| S-EPMC9202870 | biostudies-literature
| S-EPMC6136605 | biostudies-literature
| S-EPMC6541632 | biostudies-literature
| S-EPMC6408462 | biostudies-literature
| S-EPMC8967062 | biostudies-literature
| S-EPMC6811725 | biostudies-literature
| S-EPMC8325715 | biostudies-literature
| S-EPMC1544250 | biostudies-literature