Unknown

Dataset Information

0

Click Grafting of Alkyne-containing Vinyl Polymers onto Biosynthesized Extracellular Matrix Protein Containing Azide Functionality and Adhesion Control of Human Umbilical Vein Endothelial Cells.


ABSTRACT: In vivo incorporation of a phenylalanine (Phe) analogue, p-azidophenylalanine (p-N3Phe) into an artificial extracellular matrix protein (aECM-CS5-ELF) was accomplished using a bacterial expression host that harbors the mutant phenylalanyl-tRNA synthetase (PheRS) with an enlarged binding pocket, in which the Ala294Gly/Thr251Gly mutant PheRS (PheRS**) was expressed under the control of T7 promoters. In this study, biosynthesized aECM-CS5-ELF containing p-N3Phe (aECM-CS5-ELF-N3) was coupled with alkyne-containing vinyl polymers prepared via controlled radical polymerization of three vinyl monomers, (styrene, acrylamide, and N-isopropylacrylamide) using a trithiocarbonate as the RAFT agent. Grafting of the vinyl polymers onto the aECM was accomplished via a copper-catalyzed alkyne-azide click reaction. The lower critical transition temperature (LCST) was evaluated, as well as the solubility in aqueous and organic media, which are dependent on the incorporation ratio of p-N3Phe and species of graft chains, in which the LCST behavior was altered remarkably when poly(N-isopropylacrylamide) moieties were attached as side chains. Circular dichroism measurements indicate conformational change was not induced by the grafting. Specific adhesion of human umbilical vein endothelial cells (HUVECs) onto the aECM-CS5-ELF-N3-graft-poly(N-isopropylacrylamide) composite surface and subsequent temperature-sensitive detachment were also demonstrated.

SUBMITTER: Yamada T 

PROVIDER: S-EPMC4539266 | biostudies-literature | 2015 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Click Grafting of Alkyne-containing Vinyl Polymers onto Biosynthesized Extracellular Matrix Protein Containing Azide Functionality and Adhesion Control of Human Umbilical Vein Endothelial Cells.

Yamada Tomoki T   Takasu Akinori A  

RSC advances 20150101 52


<i>In vivo</i> incorporation of a phenylalanine (Phe) analogue, <i>p</i>-azidophenylalanine (<i>p</i>-N<sub>3</sub>Phe) into an artificial extracellular matrix protein (aECM-CS5-ELF) was accomplished using a bacterial expression host that harbors the mutant phenylalanyl-<i>t</i>RNA synthetase (PheRS) with an enlarged binding pocket, in which the Ala294Gly/Thr251Gly mutant PheRS (PheRS**) was expressed under the control of T7 promoters. In this study, biosynthesized aECM-CS5-ELF containing <i>p</  ...[more]

Similar Datasets

| S-EPMC10922906 | biostudies-literature
| S-EPMC5966341 | biostudies-literature
| S-EPMC5502894 | biostudies-literature
| S-EPMC6270461 | biostudies-literature
| S-EPMC4038842 | biostudies-literature
| S-EPMC3532044 | biostudies-literature
| S-EPMC3870472 | biostudies-literature
| S-EPMC5969269 | biostudies-literature
| S-EPMC4640605 | biostudies-literature
| S-EPMC6647982 | biostudies-literature