ABSTRACT: Fibroblast activation and proliferation are important for fibroblast-myofibroblast transdifferentiation, a crucial process in the pathological changes that define renal interstitial fibrosis. The left-right determination factor (Lefty) is an important cytokine of the transforming growth factor (TGF)-? family, with two variants, Lefty-1 and Lefty-2, in mice. Lefty has diverse functions, such as the regulation of embryonic development, the inhibition of TGF-?1 signaling, and the suppression of tumor activity. However, whether Lefty-1 influences fibroblast activation and proliferation, and consequently prevents fibroblast-myofibroblast transdifferentiation, remains unclear. This study aimed to investigate whether Lefty-1 can attenuate TGF-?1-induced fibroblast-myofibroblast transdifferentiation in normal rat kidney interstitial fibroblast cells (NRK-49F), as well as the mechanisms underlying any effects. Results showed that the typical fibroblast cell morphology of NRK-49F cells was altered after TGF-?1 treatment and that Lefty-1 significantly prevented this change in a dose-dependent manner. Further analyses demonstrated decreased proliferating cell nuclear antigen, cyclin D1, collagen I(A1), alpha-smooth muscle actin, and fibronectin expression. Lefty-1 further induced remarkable reductions in TGF-?1-induced Smad3 and mitogen-activated protein kinase-10/c-Jun N-terminal kinase (JNK-3) signaling, and enhanced expression of the antifibrotic factor bone morphogenetic protein (BMP)-5. However, without TGF-?1, Lefty-1 had no effect on Smad3, JNK-3, and BMP-5 activation and fibroblast-myofibroblast transdifferentiation. Taken together, these findings indicate that Lefty-1 can alleviate TGF-?1-mediated activation and the proliferation of fibroblasts. Furthermore, Lefty-1 may prevent fibroblast-myofibroblast transdifferentiation in part via modulations of Smad3, JNK-3, and BMP-5 activities in the TGF-?/BMP signaling pathway.