Ontology highlight
ABSTRACT: Background
Nearly 100% protection against malaria infection can be achieved in humans by immunization with P. falciparum radiation-attenuated sporozoites (RAS). Although it is thought that protection is mediated by T cell and antibody responses, only a few of the many pre-erythrocytic (sporozoite and liver stage) antigens that are targeted by these responses have been identified.Methodology
Twenty seven P. falciparum pre-erythrocytic antigens were selected using bioinformatics analysis and expression databases and were expressed in a wheat germ cell-free protein expression system. Recombinant proteins were recognized by plasma from RAS-immunized subjects, and 21 induced detectable antibody responses in mice and rabbit and sera from these immunized animals were used to characterize these antigens. All 21 proteins localized to the sporozoite: five localized to the surface, seven localized to the micronemes, cytoplasm, endoplasmic reticulum or nucleus, two localized to the surface and cytoplasm, and seven remain undetermined. PBMC from RAS-immunized volunteers elicited positive ex vivo or cultured ELISpot responses against peptides from 20 of the 21 antigens.Conclusions
These T cell and antibody responses support our approach of using reagents from RAS-immunized subjects to screen potential vaccine antigens, and have led to the identification of a panel of novel P. falciparum antigens. These results provide evidence to further evaluate these antigens as vaccine candidates.Trial registration
ClinicalTrials.gov NCT00870987 ClinicalTrials.gov NCT00392015.
SUBMITTER: Aguiar JC
PROVIDER: S-EPMC4546230 | biostudies-literature | 2015
REPOSITORIES: biostudies-literature
Aguiar Joao C JC Bolton Jessica J Wanga Joyce J Sacci John B JB Iriko Hideyuki H Mazeika Julie K JK Han Eun-Taek ET Limbach Keith K Patterson Noelle B NB Sedegah Martha M Cruz Ann-Marie AM Tsuboi Takafumi T Hoffman Stephen L SL Carucci Daniel D Hollingdale Michael R MR Villasante Eileen D ED Richie Thomas L TL
PloS one 20150820 8
<h4>Background</h4>Nearly 100% protection against malaria infection can be achieved in humans by immunization with P. falciparum radiation-attenuated sporozoites (RAS). Although it is thought that protection is mediated by T cell and antibody responses, only a few of the many pre-erythrocytic (sporozoite and liver stage) antigens that are targeted by these responses have been identified.<h4>Methodology</h4>Twenty seven P. falciparum pre-erythrocytic antigens were selected using bioinformatics an ...[more]