Project description:Bats are reservoirs for emerging human pathogens, including Hendra and Nipah henipaviruses and Ebola and Marburg filoviruses. These viruses demonstrate predictable patterns in seasonality and age structure across multiple systems; previous work suggests that they may circulate in Madagascar's endemic fruit bats, which are widely consumed as human food. We aimed to (a) document the extent of henipa- and filovirus exposure among Malagasy fruit bats, (b) explore seasonality in seroprevalence and serostatus in these bat populations and (c) compare mechanistic hypotheses for possible transmission dynamics underlying these data. To this end, we amassed and analysed a unique dataset documenting longitudinal serological henipa- and filovirus dynamics in three Madagascar fruit bat species. We uncovered serological evidence of exposure to Hendra-/Nipah-related henipaviruses in Eidolon dupreanum, Pteropus rufus and Rousettus madagascariensis, to Cedar-related henipaviruses in E. dupreanum and R. madagascariensis and to Ebola-related filoviruses in P. rufus and R. madagascariensis. We demonstrated significant seasonality in population-level seroprevalence and individual serostatus for multiple viruses across these species, linked to the female reproductive calendar. An age-structured subset of the data highlighted evidence of waning maternal antibodies in neonates, increasing seroprevalence in young and decreasing seroprevalence late in life. Comparison of mechanistic epidemiological models fit to these data offered support for transmission hypotheses permitting waning antibodies but retained immunity in adult-age bats. Our findings suggest that bats may seasonally modulate mechanisms of pathogen control, with consequences for population-level transmission. Additionally, we narrow the field of candidate transmission hypotheses by which bats are presumed to host and transmit potentially zoonotic viruses globally.
Project description:With the exception of Reston and Bombali viruses, the marburgviruses and ebolaviruses (family Filoviridae) cause outbreaks of viral hemorrhagic fever in sub-Saharan Africa. The Egyptian rousette bat (ERB) is a natural reservoir host for the marburgviruses and evidence suggests that bats are also natural reservoirs for the ebolaviruses. Although the search for the natural reservoirs of the ebolaviruses has largely involved serosurveillance of the bat population, there are no validated serological assays to screen bat sera for ebolavirus-specific IgG antibodies. Here, we generate filovirus-specific antisera by prime-boost immunization of groups of captive ERBs with all seven known culturable filoviruses. After validating a system of filovirus-specific indirect ELISAs utilizing infectious-based virus antigens for detection of virus-specific IgG antibodies from bat sera, we assess the level of serological cross-reactivity between the virus-specific antisera and heterologous filovirus antigens. This data is then used to generate a filovirus antibody fingerprint that can predict which of the filovirus species in the system is most antigenically similar to the species responsible for past infection. Our filovirus IgG indirect ELISA system will be a critical tool for identifying bat species with high ebolavirus seroprevalence rates to target for longitudinal studies aimed at establishing natural reservoir host-ebolavirus relationships.
Project description:Tools with predictive capabilities in regards of filovirus outbreaks are mainly anthropocentric and have disregarded the ecological dimension of the problem. Here we contribute to shift the current paradigm by studying the dynamics of the putative main zoonotic niche of filoviruses, bats, and its link to environmental drivers. We propose a framework that combines data analysis, modeling, and the evaluation of sources of variability. We implement a regression analysis using factual data to correlate environmental parameters and the presence of bats to find the distribution of resources. The information inferred by the regression is fed into a compartmental model that describes the infection state. We also account for the lack of knowledge of some parameters using a sampling/averaging technique. As a result we estimate the spatio-temporal densities of bats. Importantly, we show that our approach is able to predict where and when an outbreak is likely to appear when tested against recent epidemic data in the context of Ebola. Our framework highlights the importance of considering the feedback between the ecology and the environment in zoonotic models and sheds light on the mechanisms to propagate filoviruses geographically. We expect that our methodology can help to design prevention policies and be used as a predictive tool in the context of zoonotic diseases associated to filoviruses.
Project description:Oral sex is widely used in human foreplay, but rarely documented in other animals. Fellatio has been recorded in bonobos Pan paniscus, but even then functions largely as play behaviour among juvenile males. The short-nosed fruit bat Cynopterus sphinx exhibits resource defence polygyny and one sexually active male often roosts with groups of females in tents made from leaves. Female bats often lick their mate's penis during dorsoventral copulation. The female lowers her head to lick the shaft or the base of the male's penis but does not lick the glans penis which has already penetrated the vagina. Males never withdrew their penis when it was licked by the mating partner. A positive relationship exists between the length of time that the female licked the male's penis during copulation and the duration of copulation. Furthermore, mating pairs spent significantly more time in copulation if the female licked her mate's penis than if fellatio was absent. Males also show postcopulatory genital grooming after intromission. At present, we do not know why genital licking occurs, and we present four non-mutually exclusive hypotheses that may explain the function of fellatio in C. sphinx.
Project description:Previous studies indicated that fruit bats carry two betacoronaviruses, BatCoV HKU9 and BatCoV GCCDC1. To investigate the epidemiology and genetic diversity of these coronaviruses, we conducted a longitudinal surveillance in fruit bats in Yunnan province, China during 2009-2016. A total of 59 (10.63%) bat samples were positive for the two betacorona-viruses, 46 (8.29%) for HKU9 and 13 (2.34%) for GCCDC1, or closely related viruses. We identified a novel HKU9 strain, tentatively designated as BatCoV HKU9-2202, by sequencing the full-length genome. The BatCoV HKU9-2202 shared 83% nucleotide identity with other BatCoV HKU9 stains based on whole genome sequences. The most divergent region is in the spike protein, which only shares 68% amino acid identity with BatCoV HKU9. Quantitative PCR revealed that the intestine was the primary infection organ of BatCoV HKU9 and GCCDC1, but some HKU9 was also detected in the heart, kidney, and lung tissues of bats. This study highlights the importance of virus surveillance in natural reservoirs and emphasizes the need for preparedness against the potential spill-over of these viruses to local residents living near bat caves.
Project description:Bats are reservoirs for several zoonotic pathogens, including filoviruses. Recent work highlights the diversity of bat borne filoviruses in Asia. High risk activities at the bat-human interface pose the threat of zoonotic virus transmission. We present evidence for prior exposure of bat harvesters and two resident fruit bat species to filovirus surface glycoproteins by screening sera in a multiplexed serological assay. Antibodies reactive to two antigenically distinct filoviruses were detected in human sera and to three individual filoviruses in bats in remote Northeast India. Sera obtained from Eonycteris spelaea bats showed similar patterns of cross-reactivity as human samples, suggesting them as the species responsible for the spillover. In contrast, sera from Rousettus leschenaultii bats reacted to two different virus glycoproteins. Our results indicate circulation of several filoviruses in bats and the possibility for filovirus transmission from bats to humans.
Project description:Biological factors that influence the host range and spillover of Ebola virus (EBOV) and other filoviruses remain enigmatic. While filoviruses infect diverse mammalian cell lines, we report that cells from African straw-colored fruit bats (Eidolon helvum) are refractory to EBOV infection. This could be explained by a single amino acid change in the filovirus receptor, NPC1, which greatly reduces the affinity of EBOV-NPC1 interaction. We found signatures of positive selection in bat NPC1 concentrated at the virus-receptor interface, with the strongest signal at the same residue that controls EBOV infection in Eidolon helvum cells. Our work identifies NPC1 as a genetic determinant of filovirus susceptibility in bats, and suggests that some NPC1 variations reflect host adaptations to reduce filovirus replication and virulence. A single viral mutation afforded escape from receptor control, revealing a pathway for compensatory viral evolution and a potential avenue for expansion of filovirus host range in nature.
Project description:We detected Marburg virus genome in Egyptian fruit bats (Rousettus aegyptiacus) captured in Zambia in September 2018. The virus was closely related phylogenetically to the viruses that previously caused Marburg outbreaks in the Democratic Republic of the Congo. This finding demonstrates that Zambia is at risk for Marburg virus disease.
Project description:Madagascar is home to three endemic species of Old World Fruit Bat, which are important pollinators and seed dispersers. We aimed to quantitatively assess population trajectories for the two largest of these species, the IUCN-listed 'Vulnerable' Eidolon dupreanum and Pteropus rufus. To this end, we conducted a longitudinal field study, in which we live-captured E. dupreanum and P. rufus, estimated species-specific fecundity rates, and generated age-frequency data via histological analysis of cementum annuli layering in tooth samples extracted from a subset of individuals. We fit exponential models to resulting data to estimate annual survival probabilities for adult bats (s A = .794 for E. dupreanum; s A = .511 for P. rufus), then applied Lefkovitch modeling techniques to infer the minimum required juvenile survival rate needed to permit longterm population persistence. Given estimated adult survival, population persistence was only possible for E. dupreanum when field-based fecundity estimates were replaced by higher values reported in the literature for related species. For P. rufus, tooth-derived estimates of adult survival were so low that even assumptions of perfect (100%) juvenile annual survival would not permit stable population trajectories. Age-based survival analyses were further supported by longitudinal exit counts carried out from 2013-2018 at three local P. rufus roost sites, which demonstrated a statistically significant, faintly negative time trend, indicative of subtle regional population declines. These results suggest that Malagasy fruit bat species face significant threats to population viability, with P. rufus particularly imperiled. Immediate conservation interventions, including habitat restoration and cessation of legally sanctioned bat hunting, are needed to protect Madagascar's fruit bats into the future.
Project description:The Egyptian rousette bat (ERB) is a natural reservoir host for Marburg virus (MARV); however, the mechanisms by which MARV is transmitted bat-to-bat and to other animals are unclear. Here we co-house MARV-inoculated donor ERBs with naive contact ERBs. MARV shedding is detected in oral, rectal and urine specimens from inoculated bats from 5-19 days post infection. Simultaneously, MARV is detected in oral specimens from contact bats, indicating oral exposure to the virus. In the late study phase, we provide evidence that MARV can be horizontally transmitted from inoculated to contact ERBs by finding MARV RNA in blood and oral specimens from contact bats, followed by MARV IgG antibodies in these same bats. This study demonstrates that MARV can be horizontally transmitted from inoculated to contact ERBs, thereby providing a model for filovirus maintenance in its natural reservoir host and a potential mechanism for virus spillover to other animals.