Identification of a novel miRNA-target gene regulatory network in osteosarcoma by integrating transcriptome analysis.
Ontology highlight
ABSTRACT: Osteosarcoma remains a leading cause of cancer death in children and young adolescents. Although the introduction of multiagent chemotherapy, survival rates have not improved in two decades. Therefore, it is urgently needed to know the details regarding molecular etiology to driving therapeutic inroads for this disease. In this study we performed an integrated analysis of miRNA and mRNA expression data to explore the dysregulation of miRNA and miRNA-target gene regulatory network underlying OS. 59 differentially expressed miRNAs were identified, with 28 up-regulated and 31 down-regulated miRNAs by integrating OS miRNA expression data sets available. Using miRWalk databases prediction, we performed an anticorrelated analysis of miRNA and genes expression identified by a integrated analysis of gene expression data to identify 109 differently expressed miRNA target genes. A novel miRNA-target gene regulatory network was constructed with the miRNA-target gene pairs. miR-19b-3p, miR-20a-5p, miR-124-3p and their common target CCND2, the nodal points of regulatory network, may play important roles in OS. Bioinformatics analysis of biological functions and pathways demonstrated that target genes of miRNAs are highly correlated with carcinogenesis. Our findings may help to understand the molecular mechanisms of OS and identify targets of effective targeted therapies for OS.
SUBMITTER: He C
PROVIDER: S-EPMC4555732 | biostudies-literature | 2015
REPOSITORIES: biostudies-literature
ACCESS DATA