An Unusual Phage Repressor Encoded by Mycobacteriophage BPs.
Ontology highlight
ABSTRACT: Temperate bacteriophages express transcription repressors that maintain lysogeny by down-regulating lytic promoters and confer superinfection immunity. Repressor regulation is critical to the outcome of infection-lysogenic or lytic growth-as well as prophage induction into lytic replication. Mycobacteriophage BPs and its relatives use an unusual integration-dependent immunity system in which the phage attachment site (attP) is located within the repressor gene (33) such that site-specific integration leads to synthesis of a prophage-encoded product (gp33103) that is 33 residues shorter at its C-terminus than the virally-encoded protein (gp33136). However, the shorter form of the repressor (gp33103) is stable and active in repression of the early lytic promoter PR, whereas the longer virally-encoded form (gp33136) is inactive due to targeted degradation via a C-terminal ssrA-like tag. We show here that both forms of the repressor bind similarly to the 33-34 intergenic regulatory region, and that BPs gp33103 is a tetramer in solution. The BPs gp33103 repressor binds to five regulatory regions spanning the BPs genome, and regulates four promoters including the early lytic promoter, PR. BPs gp33103 has a complex pattern of DNA recognition in which a full operator binding site contains two half sites separated by a variable spacer, and BPs gp33103 induces a DNA bend at the full operator site but not a half site. The operator site structure is unusual in that one half site corresponds to a 12 bp palindrome identified previously, but the other half site is a highly variable variant of the palindrome.
SUBMITTER: Villanueva VM
PROVIDER: S-EPMC4557955 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA