Unknown

Dataset Information

0

Discovering Alzheimer Genetic Biomarkers Using Bayesian Networks.


ABSTRACT: Single nucleotide polymorphisms (SNPs) contribute most of the genetic variation to the human genome. SNPs associate with many complex and common diseases like Alzheimer's disease (AD). Discovering SNP biomarkers at different loci can improve early diagnosis and treatment of these diseases. Bayesian network provides a comprehensible and modular framework for representing interactions between genes or single SNPs. Here, different Bayesian network structure learning algorithms have been applied in whole genome sequencing (WGS) data for detecting the causal AD SNPs and gene-SNP interactions. We focused on polymorphisms in the top ten genes associated with AD and identified by genome-wide association (GWA) studies. New SNP biomarkers were observed to be significantly associated with Alzheimer's disease. These SNPs are rs7530069, rs113464261, rs114506298, rs73504429, rs7929589, rs76306710, and rs668134. The obtained results demonstrated the effectiveness of using BN for identifying AD causal SNPs with acceptable accuracy. The results guarantee that the SNP set detected by Markov blanket based methods has a strong association with AD disease and achieves better performance than both naïve Bayes and tree augmented naïve Bayes. Minimal augmented Markov blanket reaches accuracy of 66.13% and sensitivity of 88.87% versus 61.58% and 59.43% in naïve Bayes, respectively.

SUBMITTER: Sherif FF 

PROVIDER: S-EPMC4561111 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Discovering Alzheimer Genetic Biomarkers Using Bayesian Networks.

Sherif Fayroz F FF   Zayed Nourhan N   Fakhr Mahmoud M  

Advances in bioinformatics 20150823


Single nucleotide polymorphisms (SNPs) contribute most of the genetic variation to the human genome. SNPs associate with many complex and common diseases like Alzheimer's disease (AD). Discovering SNP biomarkers at different loci can improve early diagnosis and treatment of these diseases. Bayesian network provides a comprehensible and modular framework for representing interactions between genes or single SNPs. Here, different Bayesian network structure learning algorithms have been applied in  ...[more]

Similar Datasets

| S-EPMC3931553 | biostudies-literature
| S-EPMC1770936 | biostudies-literature
| S-EPMC2474592 | biostudies-literature
| S-EPMC3524021 | biostudies-literature
| S-EPMC9234235 | biostudies-literature
| S-EPMC4743151 | biostudies-other
| S-EPMC8789149 | biostudies-literature
| S-EPMC3231811 | biostudies-literature
| S-EPMC8047796 | biostudies-literature
| S-EPMC7267841 | biostudies-literature