Unknown

Dataset Information

0

Optimal nonlinear information processing capacity in delay-based reservoir computers.


ABSTRACT: Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.

SUBMITTER: Grigoryeva L 

PROVIDER: S-EPMC4566100 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Optimal nonlinear information processing capacity in delay-based reservoir computers.

Grigoryeva Lyudmila L   Henriques Julie J   Larger Laurent L   Ortega Juan-Pablo JP  

Scientific reports 20150911


Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to ar  ...[more]

Similar Datasets

| S-EPMC8828878 | biostudies-literature
| S-EPMC8789868 | biostudies-literature
| S-EPMC3400147 | biostudies-literature
| S-EPMC5736649 | biostudies-literature
| S-EPMC7844294 | biostudies-literature
| S-EPMC10523555 | biostudies-literature
| S-EPMC6911076 | biostudies-literature
| S-EPMC9389526 | biostudies-literature
| S-EPMC10031556 | biostudies-literature
| S-EPMC7514526 | biostudies-literature