Unknown

Dataset Information

0

Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah).


ABSTRACT:

Background

The king cobra (Ophiophagus hannah) is widely distributed throughout many parts of Asia. This study aims to investigate the complexity of Malaysian Ophiophagus hannah (MOh) venom for a better understanding of king cobra venom variation and its envenoming pathophysiology. The venom gland transcriptome was investigated using the Illumina HiSeq™ platform, while the venom proteome was profiled by 1D-SDS-PAGE-nano-ESI-LCMS/MS.

Results

Transcriptomic results reveal high redundancy of toxin transcripts (3357.36 FPKM/transcript) despite small cluster numbers, implying gene duplication and diversification within restricted protein families. Among the 23 toxin families identified, three-finger toxins (3FTxs) and snake-venom metalloproteases (SVMPs) have the most diverse isoforms. These 2 toxin families are also the most abundantly transcribed, followed in descending order by phospholipases A2 (PLA2s), cysteine-rich secretory proteins (CRISPs), Kunitz-type inhibitors (KUNs), and L-amino acid oxidases (LAAOs). Seventeen toxin families exhibited low mRNA expression, including hyaluronidase, DPP-IV and 5'-nucleotidase that were not previously reported in the venom-gland transcriptome of a Balinese O. hannah. On the other hand, the MOh proteome includes 3FTxs, the most abundantly expressed proteins in the venom (43 % toxin sbundance). Within this toxin family, there are 6 long-chain, 5 short-chain and 2 non-conventional 3FTx. Neurotoxins comprise the major 3FTxs in the MOh venom, consistent with rapid neuromuscular paralysis reported in systemic envenoming. The presence of toxic enzymes such as LAAOs, SVMPs and PLA2 would explain tissue inflammation and necrotising destruction in local envenoming. Dissimilarities in the subtypes and sequences between the neurotoxins of MOh and Naja kaouthia (monocled cobra) are in agreement with the poor cross-neutralization activity of N. kaouthia antivenom used against MOh venom. Besides, the presence of cobra venom factor, nerve growth factors, phosphodiesterase, 5'-nucleotidase, and DPP-IV in the venom proteome suggests its probable hypotensive action in subduing prey.

Conclusion

This study reports the diversity and abundance of toxins in the venom of the Malaysian king cobra (MOh). The results correlate with the pathophysiological actions of MOh venom, and dispute the use of Naja cobra antivenoms to treat MOh envenomation. The findings also provide a deeper insight into venom variations due to geography, which is crucial for the development of a useful pan-regional antivenom.

SUBMITTER: Tan CH 

PROVIDER: S-EPMC4566206 | biostudies-literature | 2015 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah).

Tan Choo Hock CH   Tan Kae Yi KY   Fung Shin Yee SY   Tan Nget Hong NH  

BMC genomics 20150910


<h4>Background</h4>The king cobra (Ophiophagus hannah) is widely distributed throughout many parts of Asia. This study aims to investigate the complexity of Malaysian Ophiophagus hannah (MOh) venom for a better understanding of king cobra venom variation and its envenoming pathophysiology. The venom gland transcriptome was investigated using the Illumina HiSeq™ platform, while the venom proteome was profiled by 1D-SDS-PAGE-nano-ESI-LCMS/MS.<h4>Results</h4>Transcriptomic results reveal high redun  ...[more]

Similar Datasets

| S-EPMC10338509 | biostudies-literature
| S-EPMC6266455 | biostudies-literature
| S-EPMC2832981 | biostudies-literature
| S-EPMC8942764 | biostudies-literature
| S-EPMC7375408 | biostudies-literature
| S-EPMC9522627 | biostudies-literature
| S-EPMC6459992 | biostudies-literature
| S-EPMC1550305 | biostudies-literature
| S-EPMC4052251 | biostudies-literature