Unknown

Dataset Information

0

Cohesin recruits the Esco1 acetyltransferase genome wide to repress transcription and promote cohesion in somatic cells.


ABSTRACT: The cohesin complex links DNA molecules and plays key roles in the organization, expression, repair, and segregation of eukaryotic genomes. In vertebrates the Esco1 and Esco2 acetyltransferases both modify cohesin's Smc3 subunit to establish sister chromatid cohesion during S phase, but differ in their N-terminal domains and expression during development and across the cell cycle. Here we show that Esco1 and Esco2 also differ dramatically in their interaction with chromatin, as Esco1 is recruited by cohesin to over 11,000 sites, whereas Esco2 is infrequently enriched at REST/NRSF target genes. Esco1's colocalization with cohesin occurs throughout the cell cycle and depends on two short motifs (the A-box and B-box) present in and unique to all Esco1 orthologs. Deleting either motif led to the derepression of Esco1-proximal genes and functional uncoupling of cohesion from Smc3 acetylation. In contrast, other mutations that preserved Esco1's recruitment separated its roles in cohesion establishment and gene silencing. We conclude that Esco1 uses cohesin as both a substrate and a scaffold for coordinating multiple chromatin-based transactions in somatic cells.

SUBMITTER: Rahman S 

PROVIDER: S-EPMC4568707 | biostudies-literature | 2015 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cohesin recruits the Esco1 acetyltransferase genome wide to repress transcription and promote cohesion in somatic cells.

Rahman Sadia S   Jones Mathew J K MJ   Jallepalli Prasad V PV  

Proceedings of the National Academy of Sciences of the United States of America 20150824 36


The cohesin complex links DNA molecules and plays key roles in the organization, expression, repair, and segregation of eukaryotic genomes. In vertebrates the Esco1 and Esco2 acetyltransferases both modify cohesin's Smc3 subunit to establish sister chromatid cohesion during S phase, but differ in their N-terminal domains and expression during development and across the cell cycle. Here we show that Esco1 and Esco2 also differ dramatically in their interaction with chromatin, as Esco1 is recruite  ...[more]

Similar Datasets

2015-08-25 | E-GEOD-71420 | biostudies-arrayexpress
2015-08-25 | GSE71420 | GEO
| S-EPMC5159507 | biostudies-literature
| S-EPMC6068434 | biostudies-literature
| S-EPMC4210108 | biostudies-literature
| S-EPMC3252581 | biostudies-literature
| S-EPMC9286023 | biostudies-literature
| S-EPMC6396947 | biostudies-literature
| S-EPMC3962721 | biostudies-literature
| S-EPMC2000559 | biostudies-literature