Unknown

Dataset Information

0

Prolonged Adaptation to a Low or High Protein Diet Does Not Modulate Basal Muscle Protein Synthesis Rates - A Substudy.


ABSTRACT: Based on controlled 36 h experiments a higher dietary protein intake causes a positive protein balance and a negative fat balance. A positive net protein balance may support fat free mass accrual. However, few data are available on the impact of more prolonged changes in habitual protein intake on whole-body protein metabolism and basal muscle protein synthesis rates.To assess changes in whole-body protein turnover and basal muscle protein synthesis rates following 12 weeks of adaptation to a low versus high dietary protein intake.A randomized parallel study was performed in 40 subjects who followed either a high protein (2.4 g protein/kg/d) or low protein (0.4 g protein/kg/d) energy-balanced diet (30/35/35% or 5/60/35% energy from protein/carbohydrate/fat) for a period of 12 weeks. A subgroup of 7 men and 8 women (body mass index: 22.8±2.3 kg/m2, age: 24.3±4.9 y) were selected to evaluate the impact of prolonged adaptation to either a high or low protein intake on whole body protein metabolism and basal muscle protein synthesis rates. After the diet, subjects received continuous infusions with L-[ring-2H5]phenylalanine and L-[ring-2H2]tyrosine in an overnight fasted state, with blood samples and muscle biopsies being collected to assess post-absorptive whole-body protein turnover and muscle protein synthesis rates in vivo in humans.After 12 weeks of intervention, whole-body protein balance in the fasted state was more negative in the high protein treatment when compared with the low protein treatment (-4.1±0.5 vs -2.7±0.6 ?mol phenylalanine/kg/h;P<0.001). Whole-body protein breakdown (43.0±4.4 vs 37.8±3.8 ?mol phenylalanine/kg/h;P<0.03), synthesis (38.9±4.2 vs 35.1±3.6 ?mol phenylalanine/kg/h;P<0.01) and phenylalanine hydroxylation rates (4.1±0.6 vs 2.7±0.6 ?mol phenylalanine/kg/h;P<0.001) were significantly higher in the high vs low protein group. Basal muscle protein synthesis rates were maintained on a low vs high protein diet (0.042±0.01 vs 0.045±0.01%/h;P = 0.620).In the overnight fasted state, adaptation to a low-protein intake (0.4 g/kg/d) does not result in a more negative whole-body protein balance and does not lower basal muscle protein synthesis rates when compared to a high-protein intake.Clinicaltrials.gov NCT01551238.

SUBMITTER: Hursel R 

PROVIDER: S-EPMC4569069 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Prolonged Adaptation to a Low or High Protein Diet Does Not Modulate Basal Muscle Protein Synthesis Rates - A Substudy.

Hursel Rick R   Martens Eveline A P EA   Gonnissen Hanne K J HK   Hamer Henrike M HM   Senden Joan M G JM   van Loon Luc J C LJ   Westerterp-Plantenga Margriet S MS  

PloS one 20150914 9


<h4>Background</h4>Based on controlled 36 h experiments a higher dietary protein intake causes a positive protein balance and a negative fat balance. A positive net protein balance may support fat free mass accrual. However, few data are available on the impact of more prolonged changes in habitual protein intake on whole-body protein metabolism and basal muscle protein synthesis rates.<h4>Objective</h4>To assess changes in whole-body protein turnover and basal muscle protein synthesis rates fol  ...[more]

Similar Datasets

| S-EPMC8918196 | biostudies-literature
| S-EPMC4930064 | biostudies-literature
2016-10-22 | GSE89054 | GEO
| S-EPMC7311673 | biostudies-literature
| S-EPMC5504233 | biostudies-literature
| S-EPMC9516635 | biostudies-literature
| S-EPMC6904952 | biostudies-literature
| S-EPMC9468266 | biostudies-literature
| S-EPMC9465001 | biostudies-literature
| S-EPMC4701543 | biostudies-literature