Extrinsic Incubation Rate is Not Accelerated in Recent California Strains of West Nile Virus in Culex tarsalis (Diptera: Culicidae).
Ontology highlight
ABSTRACT: The efficiency of West Nile virus (WNV) transmission by competent mosquito vectors is driven by temperature and defined, in part, by the extrinsic incubation period, which is the time from a mosquito's consumption of an infected bloodmeal until it becomes capable of transmitting the virus to the next vertebrate host. The extrinsic incubation period can be altered by a variety of factors involved in vector-pathogen interactions, and in North America, the WN02 strain of WNV emerged and displaced the founding NY99 strain reportedly because the duration of the extrinsic incubation period in Culex mosquitoes was shortened by a single positively selected mutation. However, recent work has suggested that this change is not universal and may depend on vector species or strain. In the current study, we estimated the extrinsic incubation periods at 22 and 30°C in Culex tarsalis Coquillett. We found that the time to transmission of the original North American WNV strain, NY99, was not different from two more recent California isolates of the WN02 genotype: one of the earliest California isolates from the southeastern deserts, and a more recent 2011 isolate from a hyperendemic region in the Central Valley. We conclude with a model-based assessment of the epidemiological effects of temperature on the duration of mosquitoes' infectious life, which estimated that most mosquitoes have an infectious life of only a few days, but its duration expands markedly at warmer temperatures.
SUBMITTER: Danforth ME
PROVIDER: S-EPMC4574603 | biostudies-literature | 2015 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA