Unknown

Dataset Information

0

INFERENCE FOR INDIVIDUAL-LEVEL MODELS OF INFECTIOUS DISEASES IN LARGE POPULATIONS.


ABSTRACT: Individual Level Models (ILMs), a new class of models, are being applied to infectious epidemic data to aid in the understanding of the spatio-temporal dynamics of infectious diseases. These models are highly flexible and intuitive, and can be parameterised under a Bayesian framework via Markov chain Monte Carlo (MCMC) methods. Unfortunately, this parameterisation can be difficult to implement due to intense computational requirements when calculating the full posterior for large, or even moderately large, susceptible populations, or when missing data are present. Here we detail a methodology that can be used to estimate parameters for such large, and/or incomplete, data sets. This is done in the context of a study of the UK 2001 foot-and-mouth disease (FMD) epidemic.

SUBMITTER: Deardon R 

PROVIDER: S-EPMC4578172 | biostudies-literature | 2010 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

INFERENCE FOR INDIVIDUAL-LEVEL MODELS OF INFECTIOUS DISEASES IN LARGE POPULATIONS.

Deardon Rob R   Brooks Stephen P SP   Grenfell Bryan T BT   Keeling Matthew J MJ   Tildesley Michael J MJ   Savill Nicholas J NJ   Shaw Darren J DJ   Woolhouse Mark E J ME  

Statistica Sinica 20100101 1


Individual Level Models (ILMs), a new class of models, are being applied to infectious epidemic data to aid in the understanding of the spatio-temporal dynamics of infectious diseases. These models are highly flexible and intuitive, and can be parameterised under a Bayesian framework via Markov chain Monte Carlo (MCMC) methods. Unfortunately, this parameterisation can be difficult to implement due to intense computational requirements when calculating the full posterior for large, or even modera  ...[more]

Similar Datasets

| S-EPMC7185451 | biostudies-literature
| S-EPMC8865399 | biostudies-literature
| S-EPMC7691459 | biostudies-literature
| S-EPMC8915959 | biostudies-literature
| S-EPMC5178099 | biostudies-literature
| S-EPMC3154913 | biostudies-literature
| S-EPMC6211302 | biostudies-other
| S-EPMC6916355 | biostudies-literature
| S-EPMC6171948 | biostudies-literature
| S-EPMC5365153 | biostudies-literature