Unknown

Dataset Information

0

KDM4/JMJD2 Histone Demethylase Inhibitors Block Prostate Tumor Growth by Suppressing the Expression of AR and BMYB-Regulated Genes.


ABSTRACT: Histone lysine demethylase KDM4/JMJD2s are overexpressed in many human tumors including prostate cancer (PCa). KDM4s are co-activators of androgen receptor (AR) and are thus potential therapeutic targets. Yet to date few KDM4 inhibitors that have anti-prostate tumor activity in vivo have been developed. Here, we report the anti-tumor growth effect and molecular mechanisms of three novel KDM4 inhibitors (A1, I9, and B3). These inhibitors repressed the transcription of both AR and BMYB-regulated genes. Compound B3 is highly selective for a variety of cancer cell lines including PC3 cells that lack AR. B3 inhibited the in vivo growth of tumors derived from PC3 cells and ex vivo human PCa explants. We identified a novel mechanism by which KDM4B activates the transcription of Polo-like kinase 1 (PLK1). B3 blocked the binding of KDM4B to the PLK1 promoter. Our studies suggest a potential mechanism-based therapeutic strategy for PCa and tumors with elevated KDM4B/PLK1 expression.

SUBMITTER: Duan L 

PROVIDER: S-EPMC4578295 | biostudies-literature | 2015 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

KDM4/JMJD2 Histone Demethylase Inhibitors Block Prostate Tumor Growth by Suppressing the Expression of AR and BMYB-Regulated Genes.

Duan Lingling L   Rai Ganesha G   Roggero Carlos C   Zhang Qing-Jun QJ   Wei Qun Q   Ma Shi Hong SH   Zhou Yunyun Y   Santoyo John J   Martinez Elisabeth D ED   Xiao Guanghua G   Raj Ganesh V GV   Jadhav Ajit A   Simeonov Anton A   Maloney David J DJ   Rizo Josep J   Hsieh Jer-Tsong JT   Liu Zhi-Ping ZP  

Chemistry & biology 20150910 9


Histone lysine demethylase KDM4/JMJD2s are overexpressed in many human tumors including prostate cancer (PCa). KDM4s are co-activators of androgen receptor (AR) and are thus potential therapeutic targets. Yet to date few KDM4 inhibitors that have anti-prostate tumor activity in vivo have been developed. Here, we report the anti-tumor growth effect and molecular mechanisms of three novel KDM4 inhibitors (A1, I9, and B3). These inhibitors repressed the transcription of both AR and BMYB-regulated g  ...[more]

Similar Datasets

| S-EPMC3655154 | biostudies-literature
| S-EPMC6776794 | biostudies-literature
| S-EPMC6813854 | biostudies-literature
| S-EPMC5960326 | biostudies-literature
| S-EPMC5204329 | biostudies-other
| S-EPMC6928947 | biostudies-literature