Unknown

Dataset Information

0

Visual recovery in cortical blindness is limited by high internal noise.


ABSTRACT: Damage to the primary visual cortex typically causes cortical blindness (CB) in the hemifield contralateral to the damaged hemisphere. Recent evidence indicates that visual training can partially reverse CB at trained locations. Whereas training induces near-complete recovery of coarse direction and orientation discriminations, deficits in fine motion processing remain. Here, we systematically disentangle components of the perceptual inefficiencies present in CB fields before and after coarse direction discrimination training. In seven human CB subjects, we measured threshold versus noise functions before and after coarse direction discrimination training in the blind field and at corresponding intact field locations. Threshold versus noise functions were analyzed within the framework of the linear amplifier model and the perceptual template model. Linear amplifier model analysis identified internal noise as a key factor differentiating motion processing across the tested areas, with visual training reducing internal noise in the blind field. Differences in internal noise also explained residual perceptual deficits at retrained locations. These findings were confirmed with perceptual template model analysis, which further revealed that the major residual deficits between retrained and intact field locations could be explained by differences in internal additive noise. There were no significant differences in multiplicative noise or the ability to process external noise. Together, these results highlight the critical role of altered internal noise processing in mediating training-induced visual recovery in CB fields, and may explain residual perceptual deficits relative to intact regions of the visual field.

SUBMITTER: Cavanaugh MR 

PROVIDER: S-EPMC4585331 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Visual recovery in cortical blindness is limited by high internal noise.

Cavanaugh Matthew R MR   Zhang Ruyuan R   Melnick Michael D MD   Das Anasuya A   Roberts Mariel M   Tadin Duje D   Carrasco Marisa M   Huxlin Krystel R KR  

Journal of vision 20150101 10


Damage to the primary visual cortex typically causes cortical blindness (CB) in the hemifield contralateral to the damaged hemisphere. Recent evidence indicates that visual training can partially reverse CB at trained locations. Whereas training induces near-complete recovery of coarse direction and orientation discriminations, deficits in fine motion processing remain. Here, we systematically disentangle components of the perceptual inefficiencies present in CB fields before and after coarse di  ...[more]

Similar Datasets

| S-EPMC6689678 | biostudies-literature
| S-EPMC7020609 | biostudies-literature
| S-EPMC6461696 | biostudies-literature
| S-EPMC5730555 | biostudies-literature
| S-EPMC3074421 | biostudies-literature
| S-EPMC5553457 | biostudies-other
| S-EPMC8678383 | biostudies-literature
| S-EPMC6706377 | biostudies-literature
| S-EPMC3129552 | biostudies-literature
| S-EPMC6583541 | biostudies-literature