Unknown

Dataset Information

0

Parcellation of Human and Monkey Core Auditory Cortex with fMRI Pattern Classification and Objective Detection of Tonotopic Gradient Reversals.


ABSTRACT: Auditory cortex (AC) contains several primary-like, or "core," fields, which receive thalamic input and project to non-primary "belt" fields. In humans, the organization and layout of core and belt auditory fields are still poorly understood, and most auditory neuroimaging studies rely on macroanatomical criteria, rather than functional localization of distinct fields. A myeloarchitectonic method has been suggested recently for distinguishing between core and belt fields in humans (Dick F, Tierney AT, Lutti A, Josephs O, Sereno MI, Weiskopf N. 2012. In vivo functional and myeloarchitectonic mapping of human primary auditory areas. J Neurosci. 32:16095-16105). We propose a marker for core AC based directly on functional magnetic resonance imaging (fMRI) data and pattern classification. We show that a portion of AC in Heschl's gyrus classifies sound frequency more accurately than other regions in AC. Using fMRI data from macaques, we validate that the region where frequency classification performance is significantly above chance overlaps core auditory fields, predominantly A1. Within this region, we measure tonotopic gradients and estimate the locations of the human homologues of the core auditory subfields A1 and R. Our results provide a functional rather than anatomical localizer for core AC. We posit that inter-individual variability in the layout of core AC might explain disagreements between results from previous neuroimaging and cytological studies.

SUBMITTER: Schonwiesner M 

PROVIDER: S-EPMC4585487 | biostudies-literature | 2015 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Parcellation of Human and Monkey Core Auditory Cortex with fMRI Pattern Classification and Objective Detection of Tonotopic Gradient Reversals.

Schönwiesner Marc M   Dechent Peter P   Voit Dirk D   Petkov Christopher I CI   Krumbholz Katrin K  

Cerebral cortex (New York, N.Y. : 1991) 20140605 10


Auditory cortex (AC) contains several primary-like, or "core," fields, which receive thalamic input and project to non-primary "belt" fields. In humans, the organization and layout of core and belt auditory fields are still poorly understood, and most auditory neuroimaging studies rely on macroanatomical criteria, rather than functional localization of distinct fields. A myeloarchitectonic method has been suggested recently for distinguishing between core and belt fields in humans (Dick F, Tiern  ...[more]

Similar Datasets

| S-EPMC3411355 | biostudies-literature
| S-EPMC8720195 | biostudies-literature
| S-EPMC5324648 | biostudies-literature
| S-EPMC7198896 | biostudies-literature
| S-EPMC5614559 | biostudies-literature
| S-EPMC3189203 | biostudies-literature
| S-EPMC2793370 | biostudies-literature
| S-EPMC4033909 | biostudies-literature
| S-EPMC3123449 | biostudies-literature
| S-EPMC6726073 | biostudies-literature