Unknown

Dataset Information

0

Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams.


ABSTRACT: With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. Here we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.

SUBMITTER: Bang W 

PROVIDER: S-EPMC4585717 | biostudies-literature | 2015 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams.

Bang W W   Albright B J BJ   Bradley P A PA   Gautier D C DC   Palaniyappan S S   Vold E L EL   Santiago Cordoba M A MA   Hamilton C E CE   Fernández J C JC  

Scientific reports 20150922


With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invali  ...[more]

Similar Datasets

| S-EPMC9452511 | biostudies-literature
| S-EPMC5539319 | biostudies-other
| S-EPMC8244043 | biostudies-literature
| S-EPMC5869726 | biostudies-literature
| S-EPMC5760627 | biostudies-literature
| S-EPMC7560615 | biostudies-literature
| S-EPMC6095895 | biostudies-other
| S-EPMC4674747 | biostudies-other
| S-EPMC4626864 | biostudies-other
| S-EPMC4756333 | biostudies-other