Unknown

Dataset Information

0

Lactate promotes PGE2 synthesis and gluconeogenesis in monocytes to benefit the growth of inflammation-associated colorectal tumor.


ABSTRACT: Reprogramming energy metabolism, such as enhanced glycolysis, is an Achilles' heel in cancer treatment. Most studies have been performed on isolated cancer cells. Here, we studied the energy-transfer mechanism in inflammatory tumor microenvironment. We found that human THP-1 monocytes took up lactate secreted from tumor cells through monocarboxylate transporter 1. In THP-1 monocytes, the oxidation product of lactate, pyruvate competed with the substrate of proline hydroxylase and inhibited its activity, resulting in the stabilization of HIF-1? under normoxia. Mechanistically, activated hypoxia-inducible factor 1-? in THP-1 monocytes promoted the transcriptions of prostaglandin-endoperoxide synthase 2 and phosphoenolpyruvate carboxykinase, which were the key enzyme of prostaglandin E2 synthesis and gluconeogenesis, respectively, and promote the growth of human colon cancer HCT116 cells. Interestingly, lactate could not accelerate the growth of colon cancer directly in vivo. Instead, the human monocytic cells affected by lactate would play critical roles to 'feed' the colon cancer cells. Thus, recycling of lactate for glucose regeneration was reported in cancer metabolism. The anabolic metabolism of monocytes in inflammatory tumor microenvironment may be a critical event during tumor development, allowing accelerated tumor growth.

SUBMITTER: Wei L 

PROVIDER: S-EPMC4594635 | biostudies-literature | 2015 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Lactate promotes PGE2 synthesis and gluconeogenesis in monocytes to benefit the growth of inflammation-associated colorectal tumor.

Wei Libin L   Zhou Yuxin Y   Yao Jing J   Qiao Chen C   Ni Ting T   Guo Ruichen R   Guo Qinglong Q   Lu Na N  

Oncotarget 20150601 18


Reprogramming energy metabolism, such as enhanced glycolysis, is an Achilles' heel in cancer treatment. Most studies have been performed on isolated cancer cells. Here, we studied the energy-transfer mechanism in inflammatory tumor microenvironment. We found that human THP-1 monocytes took up lactate secreted from tumor cells through monocarboxylate transporter 1. In THP-1 monocytes, the oxidation product of lactate, pyruvate competed with the substrate of proline hydroxylase and inhibited its a  ...[more]

Similar Datasets

| S-EPMC9064954 | biostudies-literature
| S-EPMC5924876 | biostudies-other
| S-EPMC3411870 | biostudies-literature
| S-EPMC4392604 | biostudies-literature
| S-EPMC5655125 | biostudies-literature
| S-EPMC6528237 | biostudies-literature
| S-EPMC5783934 | biostudies-literature
| S-EPMC8185084 | biostudies-literature
| S-EPMC6702298 | biostudies-literature
| S-EPMC7611075 | biostudies-literature