Micro-RNAs and macrophage diversity in atherosclerosis: new players, new challenges…new opportunities for therapeutic intervention?
Ontology highlight
ABSTRACT: Efforts in experimental therapeutics of atherosclerosis are mostly focused on identifying candidate targets that can be exploited in developing new strategies to reduce plaque progression, induce its regression and/or improve stability of advanced lesions. Plaque macrophages are central players in all these processes, and consequently a significant amount of research is devoted to understanding mechanisms that regulate, for instance, macrophage apoptosis, necrosis or migration. Macrophage diversity is a key feature of the macrophage population in the plaque and can impact many aspects of lesion development. Thus, searching for molecular entities that contribute to atherorelevant functions of a specific macrophage type but not others may lead to identification of targets that can be exploited in phenotype selective modulation of the lesional macrophage. This however, remains an unmet goal. In recent years several studies have revealed critical functions of micro-RNAs (miRs) in mechanisms of macrophage polarization, and a number of miRs have emerged as being specific of distinctive macrophage subsets. Not only can these miRs represent the first step towards recognition of phenotype specific targets, but they may also pave the way to reveal novel atherorelevant pathways within macrophage subsets. This article discusses some of these recent findings, speculates on their potential relevance to atherosclerosis and elaborates on the prospective use of miRs to affect the function of plaque macrophages in a phenotype selective manner.
SUBMITTER: Vazquez G
PROVIDER: S-EPMC4594832 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA