Unknown

Dataset Information

0

Ion Frequency Landscape in Growing Plants.


ABSTRACT: It has been interesting that nearly all of the ion activities that have been analysed thus far have exhibited oscillations that are tightly coupled to growth. Here, we present discrete Fourier transform (DFT) spectra with a finite sampling of tip-growing cells and organs that were obtained from voltage measurements of the elongating coleoptiles of maize in situ. The electromotive force (EMF) oscillations (~ 0.1 ?V) were measured in a simple but highly sensitive resistor-inductor circuit (RL circuit), in which the solenoid was initially placed at the tip of the specimen and then was moved thus changing its position in relation to growth (EMF can be measured first at the tip, then at the sub-apical part and finally at the shank). The influx- and efflux-induced oscillations of Ca2+, along with H+, K+ and Cl- were densely sampled (preserving the Nyquist theorem in order to 'grasp the structure' of the pulse), the logarithmic amplitude of pulse spectrum was calculated, and the detected frequencies, which displayed a periodic sequence of pulses, were compared with the literature data. A band of life vital individual pulses was obtained in a single run of the experiment, which not only allowed the fundamental frequencies (and intensities of the processes) to be determined but also permitted the phase relations of the various transport processes in the plasma membrane and tonoplast to be established. A discrete (quantised) frequency spectrum was achieved for a growing plant for the first time, while all of the metabolic and enzymatic functions of the life cell cycle were preserved using this totally non-invasive treatment.

SUBMITTER: Pietruszka M 

PROVIDER: S-EPMC4596807 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Ion Frequency Landscape in Growing Plants.

Pietruszka Mariusz M   Haduch-Sendecka Aleksandra A  

PloS one 20151007 10


It has been interesting that nearly all of the ion activities that have been analysed thus far have exhibited oscillations that are tightly coupled to growth. Here, we present discrete Fourier transform (DFT) spectra with a finite sampling of tip-growing cells and organs that were obtained from voltage measurements of the elongating coleoptiles of maize in situ. The electromotive force (EMF) oscillations (~ 0.1 μV) were measured in a simple but highly sensitive resistor-inductor circuit (RL circ  ...[more]

Similar Datasets

| S-EPMC4658177 | biostudies-literature
| S-EPMC6913436 | biostudies-literature
| S-EPMC7748010 | biostudies-literature
| S-EPMC5432656 | biostudies-literature
2008-03-29 | GSE9765 | GEO
| S-EPMC2728988 | biostudies-literature
| S-EPMC4470482 | biostudies-literature
| S-EPMC2637909 | biostudies-literature
| S-EPMC5648232 | biostudies-literature
| S-EPMC4937074 | biostudies-literature