Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN) from a Geostationary Satellite.
Ontology highlight
ABSTRACT: The prediction of the short-term quantitative precipitation nowcasting (QPN) from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN using images of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F) which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC); the Horn-Schunck optical-flow scheme (PHS); and the Pyramid Lucas-Kanade Optical Flow method (PPLK), which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6). The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN.
SUBMITTER: Liu Y
PROVIDER: S-EPMC4598110 | biostudies-literature | 2015
REPOSITORIES: biostudies-literature
ACCESS DATA