Unknown

Dataset Information

0

Mutations in PIGY: expanding the phenotype of inherited glycosylphosphatidylinositol deficiencies.


ABSTRACT: Glycosylphosphatidylinositol (GPI)-anchored proteins are ubiquitously expressed in the human body and are important for various functions at the cell surface. Mutations in many GPI biosynthesis genes have been described to date in patients with multi-system disease and together these constitute a subtype of congenital disorders of glycosylation. We used whole exome sequencing in two families to investigate the genetic basis of disease and used RNA and cellular studies to investigate the functional consequences of sequence variants in the PIGY gene. Two families with different phenotypes had homozygous recessive sequence variants in the GPI biosynthesis gene PIGY. Two sisters with c.137T>C (p.Leu46Pro) PIGY variants had multi-system disease including dysmorphism, seizures, severe developmental delay, cataracts and early death. There were significantly reduced levels of GPI-anchored proteins (CD55 and CD59) on the surface of patient-derived skin fibroblasts (?20-50% compared with controls). In a second, consanguineous family, two siblings had moderate development delay and microcephaly. A homozygous PIGY promoter variant (c.-540G>A) was detected within a 7.7 Mb region of autozygosity. This variant was predicted to disrupt a SP1 consensus binding site and was shown to be associated with reduced gene expression. Mutations in PIGY can occur in coding and non-coding regions of the gene and cause variable phenotypes. This article contributes to understanding of the range of disease phenotypes and disease genes associated with deficiencies of the GPI-anchor biosynthesis pathway and also serves to highlight the potential importance of analysing variants detected in 5'-UTR regions despite their typically low coverage in exome data.

SUBMITTER: Ilkovski B 

PROVIDER: S-EPMC4599673 | biostudies-literature | 2015 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications


Glycosylphosphatidylinositol (GPI)-anchored proteins are ubiquitously expressed in the human body and are important for various functions at the cell surface. Mutations in many GPI biosynthesis genes have been described to date in patients with multi-system disease and together these constitute a subtype of congenital disorders of glycosylation. We used whole exome sequencing in two families to investigate the genetic basis of disease and used RNA and cellular studies to investigate the function  ...[more]

Similar Datasets

| S-EPMC4055706 | biostudies-literature
| S-EPMC10920963 | biostudies-literature
| S-EPMC3895633 | biostudies-literature
| S-EPMC7655366 | biostudies-literature
| S-EPMC4422538 | biostudies-literature
| S-EPMC3535578 | biostudies-literature
| S-EPMC11292905 | biostudies-literature
| S-EPMC1377825 | biostudies-other
| S-EPMC10823743 | biostudies-literature
| S-EPMC3546164 | biostudies-literature