Project description:PurposeDeficiency of interleukin-1 receptor antagonist (DIRA) is a rare life-threatening autoinflammatory disease caused by autosomal recessive mutations in IL1RN. DIRA presents clinically with early onset generalized pustulosis, multifocal osteomyelitis, and elevation of acute phase reactants. We evaluated and treated an antibiotic-unresponsive patient with presumed DIRA with recombinant IL-1Ra (anakinra). The patient developed anaphylaxis to anakinra and was subsequently desensitized.MethodsGenetic analysis of IL1RN was undertaken and treatment with anakinra was initiated.ResultsA 5-month-old Indian girl born to healthy non-consanguineous parents presented at the third week of life with irritability, sterile multifocal osteomyelitis including ribs and clavicles, a mild pustular rash, and elevated acute phase reactants. SNP array of the patient's genomic DNA revealed a previously unrecognized homozygous deletion of approximately 22.5 Kb. PCR and Sanger sequencing of the borders of the deleted area allowed identification of the breakpoints of the deletion, thus confirming a homozygous 22,216 bp deletion that spans the first four exons of IL1RN. Due to a clinical suspicion of DIRA, anakinra was initiated which resulted in an anaphylactic reaction that triggered desensitization with subsequent marked and sustained clinical and laboratory improvement.ConclusionWe report a novel DIRA-causing homozygous deletion affecting IL1RN in an Indian patient. The mutation likely is a founder mutation; the design of breakpoint-specific primers will enable genetic screening in Indian patients suspected of DIRA. The patient developed anaphylaxis to anakinra, was desensitized, and is in clinical remission on continued treatment.
Project description:BackgroundDeficiency of the natural antagonist of interleukin-1 was first described in 2009 and so far 20 patients has been reported. In Brazil just two cases have been reported both carrying the same homozygous 15 bp deletion. Blocking interleukin-1 has changed rate survival for DIRA patients. The use of anakinra and rilonacept has been reported safe and efficient, whereas the selective blockade of interleukin-1 beta, using the monoclonal antibody canakinumab has been reported in a single case only.Case presentationHere we report a case of a 7 years old Brazilian boy that presented with recurrent episodes of systemic inflammation with severe disabling osteomyelitis with mild pustular skin rash. A Next Generation Sequencing gene panel allowed to detect two pathogenic mutations in the IL1RN gene, described in compound heterozygosity. Corticosteroids was effective in controlling inflammation and anti-IL1 beta blocker triggered disease flare. Complete clinical control could be achieved using IL-1 receptor antagonist.ConclusionsDIRA is a severe, life threatening autoinflammatory condition with low numbers of patients described all over the world. The mutation p.Asp72_Ile76del in IL1RN is presented in all Brazilian DIRA patients already described and p.Q45* (rs1019766125) is a new mutation affecting the IL1RN gene. Following the pathogenesis of DIRA, blocking both subunits of interleukin one as well as antagonizing the receptor using anakinra or rilonacept seems to be effective. There is just one report using canakinumab for the treatment of DIRA and this is the first report of disease flare using this drug.
Project description:The hyperornithinemia-hyperammonemia-homocitrullinuria syndrome is a rare autosomal recessive disorder caused by the functional deficiency of the mitochondrial ornithine transporter 1 (ORC1). ORC1 is encoded by the SLC25A15 gene and catalyzes the transport of cytosolic ornithine into mitochondria in exchange for citrulline. Although the age of onset and the severity of the symptoms vary widely, the disease usually manifests in early infancy. The typical clinical features include protein intolerance, lethargy, episodic confusion, cerebellar ataxia, seizures and mental retardation. In this study, we identified a novel p.Ala15Val (c.44C>T) mutation by genomic DNA sequencing in a Turkish child presenting severe tantrum, confusion, gait disturbances and loss of speech abilities in addition to hyperornithinemia, hyperammonemia and homocitrullinuria. One hundred Turkish control chromosomes did not possess this variant. The functional effect of the novel mutation was assessed by both complementation of the yeast ORT1 null mutant and transport assays. Our study demonstrates that the A15V mutation dramatically interferes with the transport properties of ORC1 since it was shown to inhibit ornithine transport nearly completely.
Project description:BackgroundGordon Holmes syndrome (GHS) is a rare autosomal recessive disorder characterized by hypogonadotropic hypogonadism, cognitive decline, and cerebellar ataxia. Mutations in the Ring Finger Protein 216 (RNF216) gene have been known to be associated with GHS therewithal RNF216 mutations have been detected in cases with Huntington-like disease, 4H syndrome (hypodontia, hypomyelination, ataxia and hypogonadotropic hypogonadism), and congenital hypogonadotropic hypogonadism.Case presentationHere we report a novel homozygous frameshift mutation in RNF216 gene c.1860_1861dupCT (p.Cys621SerfsTer56) in a patient with hypogonadotropic hypogonadism, ataxia, and cognitive decline diagnosed with GHS also co-occurrence of parkinsonism and dystonia which was not reported before.ConclusionsWe report an extremely rare case of GHS. The core features of GHS are well defined, but genotype-phenotype correlations are still limited. To understand the pathophysiology of different phenotypes, the type and localization of novel mutations need to be defined, and the effect of these different variants on clinical features needs to be determined. Further studies should explain the factors of phenotypic variability present in GHS patients with RNF216 mutations.
Project description:Beta (β)-thalassemia is the most frequently observed hereditary blood disorder in the world. It is characterized by deficiency of hemoglobin β-globin gene and is also a profoundly heterogeneous both at the molecular and clinical level. In the case of β-thalassemia, there is reduced (β(+) type) or absent (β(o) type) synthesis of the beta chains of hemoglobin. β-Thalassemia clinically occurs in three main forms: major, intermedia and minor according to requirement of transfusion. The objective of this study was to evaluate β-thalassemia mutations in 89 patients ranging from 2 months to 16 years of age, who enrolled to Medical School Research and Training Hospital, Gaziantep University. The direct DNA sequence analysis was performed for mutation scanning of β-globin gene. 89 children with β-Thalassemia including all types were analyzed, 16 different β-thalassemia mutations were detected. We have also identified a novel mutation (HBB.c.-80delT, rs397509430) in the promoter region (-30 TATA box) of β-globin gene, and clinical data of patient having novel mutation was given. The β-Thalassemia mutations were determined as β-Thalassemia major type in 42 patients (47.19 %), β-Thalassemia intermedia in 4 (4.49 %), β-Thalassemia minor in 43, (48.31 %) patients. The most frequent mutation was IVS I-110 G>A, followed by IVS I-1 G>A, IVS I-6 T>C, IVS II-1 G>A, respectively.
Project description:Perrault syndrome (PRLTS) is a heterogeneous group of clinical and genetic disorders characterized by sensory neuronal hearing loss in both sexes and premature ovarian failure or infertility in females. Neurological and hearing loss symptoms appear early in life, but female infertility cannot be detected before puberty. Spastic limbs, muscle weakness, delayed puberty and irregular menstrual cycles have also been observed in PRLTS patients. Mutations in five genes, i.e. HSD17B4, HARS2, CLPP, LARS2, and C10orf2, have been reported in five subtypes of PRLTS. Here, we report a milder phenotype of PRLTS in a Turkish family in which two affected patients had no neurological findings. However, both were characterized by sensory neuronal hearing loss and the female sibling had secondary amenorrhea and gonadal dysgenesis. Genome-wide homozygosity mapping using 300K single-nucleotide polymorphism microarray analysis together with iScan platform (Illumina, USA) followed by candidate gene Sanger sequencing with ABI 3500 Genetic Analyzer (Life Technologies, USA) were used for molecular diagnosis. We found a novel missense alteration c.624C>G; p.Ile208Met in exon 5 of the CLPP at chromosome 19p13.3. This study expands the mutation spectrum of CLPP pathogenicity in PRLTS type 3 phenotype.
Project description:SECISBP2 is an essential factor in selenoprotein synthesis, and its mutations result in a multiorgan syndrome, including abnormal thyroid hormone metabolism. A 10-year-old obese Turkish boy born to consanguineous parents presented with high thyroxine, low triiodothyronine, high reverse triiodothyronine, and normal or slightly elevated thyrotropin. He also had attention-deficit disorder and muscle weakness but no delay in growth or bone age. Sequencing of genomic DNA revealed a novel c.800_801insA, p.K267Kfs*2 mutation, homozygous in the proband and heterozygous in both parents and his brother. Studies showed reduction in several selenoproteins in serum and fibroblasts.
Project description:Megalencephalic leukoencephalopathy (MLC) with subcortical cysts, also known as Van der Knaap disease (MIM #604004) is an autosomal recessive neurological disorder characterized by early onset macrocephaly, epilepsy, neurological deterioration with cerebellar ataxia and spasticity. An 8-month-old boy was admitted to our pediatric neurology clinic with macrocephaly. His brain magnetic resonance imaging (MRI) revealed bilateral, diffuse, symmetric structural white matter abnormalities, relatively sparing the cerebellum and bilateral subcortical temporal cysts. The diagnosis of Van der Knaap disease was suspected based on the clinical features and imaging findings and the genetic analysis revealed a novel homozygous c.768+2T>C mutation of the MLC1 gene. For determination of the novel splice-site mutation's effect, cDNA amplification was performed. cDNA analysis showed that the splice-site c.768+2T>C mutation gave rise to exon 9 skipping.
Project description:PurposeProgressive rod-cone degeneration (PRCD) is a canine form of autosomal recessive photoreceptor degeneration and serves as an animal model for human retinitis pigmentosa (RP). To date, only two RP-causing mutations of the PRCD gene have been reported in humans. We found a novel mutation in PRCD (c.52C>T, p.R18X) in three siblings affected by RP and present detailed morphologic and functional parameters.MethodsA complete ophthalmological examination was performed including psychophysical tests (best-corrected visual acuity, Lanthony Panel D-15 color vision test, and visual field) and electrophysiology (ganzfeld and multifocal electroretinogram). Additionally, color and infrared fundus photography, autofluorescence, and spectral domain optical coherence tomography recordings were performed. Genomic DNA of the three affected individuals was analyzed with high-throughput sequencing for all RP-related genes in a diagnostic set-up.ResultsWe identified a novel homozygous mutation in PRCD (c.52C>T, p.R18X) with diagnostic high-throughput panel sequencing. All three patients showed an advanced stage of retinitis pigmentosa with reduced visual acuity (mean: 20/80), small residual visual fields (mean for target III4e: 1134.35 deg²), and non-detectable electrophysiological responses. Myopia, posterior subcapsular cataract, bone spicule-like pigmentation, and attenuated arterioles were typical findings. Interestingly, bull's eye maculopathy due to patchy retinal pigment epithelium atrophy was also present in all patients. The mean central retinal thickness observed in optical coherence tomography was 148 µm.ConclusionsThe identification of a third mutation in PRCD confirms its role in the pathogenesis of RP. Clinical findings were in line with the morphological changes observed in previous studies. Bull's eye maculopathy seems to be a hallmark of RP due to mutations in the PRCD gene.
Project description:3-hydroxyisobutyryl-CoA hydrolase (HIBCH) deficiency (OMIM 250620) is an autosomal recessive inborn error of valine catabolism characterized by severely delayed psychomotor development, progressive neurodegeneration, recurrent metabolic attacks with intercurrent illness, increased lactic acid, cerebral atrophy, and brain lesions in the basal ganglia. HIBCH gene defect is a very rare organic aciduria and also might cause secondary mitochondrial dysfunction. We report a 12-month-old severely affected female infant with a novel homozygous c.556C>G; p.R186G variant in the HIBCH gene presenting with axial hypotonia, severe developmental delay, and brain lesions in the basal ganglia and provide an overview of the literature. When suspected, newborn and selective screening with tandem mass analyses should include hydroxy-C4-carnitine to diagnose this disorder. However, in some cases, mostly in those with milder phenotype, diagnosis may be missed due to normal hydroxy-C4 carnitine levels.