Project description:Nerve growth factor (NGF) is known to induce inflammation and pain; however its role in opioid-induced tolerance has not been studied. This study investigated the effects of an anti-NGF neutralizing antibody on the development of tolerance following chronic morphine treatment in naïve rats.Four groups of rats were used in this study; one treated with saline alone, one with 10 mg/kg of morphine, one with 10 μg of anti-NGF and the other with 10 mg/kg of morphine + 10 μg of anti-NGF, twice per day for 5 days. The route of treatment was subcutaneous (S.C.) for morphine and saline, and intraperitoneal (i.p.) for anti-NGF. Response to a noxious thermal stimulus during the course of drug treatment was assessed (Hargreaves' test). Further, the change in the NGF levels in the lumbar spinal cord was measured by ELISA.Our results showed that repeated administration of morphine produced an apparent tolerance which was significantly attenuated by co-administration of anti-NGF (P < 0.001). Additionally, the area under the curve (AUC) of the analgesic effect produced by the combination of morphine and anti-NGF was significantly (P < 0.001) greater than for saline controls and chronic morphine treated rats. Moreover, the level of NGF in the spinal cord of chronic morphine treated rats was significantly higher (P < 0.05) than in both the saline control group and the group receiving simultaneous administration of anti-NGF with morphine. These results indicate that anti-NGF has the potential to attenuate morphine-induced tolerance behavior by attenuating the effects of NGF at the spinal level.Taken together, our study strongly suggests that the NGF signaling system is a potential novel target for treating opioid-induced tolerance.
Project description:Dysregulation of the ERBB/EGFR signalling pathway causes multiple types of cancer. Accordingly, ADAM17, the primary shedding enzyme that releases and activates ERBB ligands, is tightly regulated. It has recently become clear that iRhom proteins, inactive members of the rhomboid-like superfamily, are regulatory cofactors for ADAM17. Here, we show that oncogenic KRAS mutants target the cytoplasmic domain of iRhom2 (also known as RHBDF2) to induce ADAM17-dependent shedding and the release of ERBB ligands. Activation of ERK1/2 by oncogenic KRAS induces the phosphorylation of iRhom2, recruitment of the phospho-binding 14-3-3 proteins, and consequent ADAM17-dependent shedding of ERBB ligands. In addition, cancer-associated mutations in iRhom2 act as sensitisers in this pathway by further increasing KRAS-induced shedding of ERBB ligands. This mechanism is conserved in lung cancer cells, where iRhom activity is required for tumour xenograft growth. In this context, the activity of oncogenic KRAS is modulated by the iRhom2-dependent release of ERBB ligands, thus placing the cytoplasmic domain of iRhom2 as a central component of a positive feedback loop in lung cancer cells. This article has an associated First Person interview with the first authors of the paper.
Project description:BackgroundMembers of the ErbB family of growth factor receptors are intricately linked with epithelial cell biology, development and tumourigenesis; however, the mechanisms involved in their downstream signalling are poorly understood. Indeed, it is unclear how signal specificity is achieved and the relative contribution each receptor has to specific gene expression.MethodsGene expression profiling of a human mammary luminal epithelial cell model of ErbB2-overexpression was carried out using cDNA microarrays with a common RNA reference approach to examine long-term overlapping and differential responses to EGF and heregulin beta1 treatment in the context of ErbB2 overexpression. Altered gene expression was validated using quantitative real time PCR and/or immunoblotting. One gene of interest was targeted for further characterisation, where the effects of siRNA-mediated silencing on IGF1-dependent signalling and cellular phenotype were examined and compared to the effects of loss of ErbB2 expression.Results775 genes were differentially expressed and clustered in terms of their growth factor responsiveness. As well as identifying uncharacterized genes as novel targets of ErbB2-dependent signalling, ErbB2 overexpression augmented the induction of multiple genes involved in proliferation (e.g. MYC, MAP2K1, MAP2K3), autocrine growth factor signalling (VEGF, PDGF) and adhesion/cytoskeletal regulation (ZYX, THBS1, VCL, CNN3, ITGA2, ITGA3, NEDD9, TAGLN), linking them to the hyper-poliferative and altered adhesive phenotype of the ErbB2-overexpressing cells. We also report ErbB2-dependent down-regulation of multiple interferon-stimulated genes that may permit ErbB2-overexpressing cells to resist the anti-proliferative action of interferons. Finally, IGFBP3 was unique in its pattern of regulation and we further investigated a possible role for IGFBP3 down-regulation in ErbB2-dependent transformation through suppressed IGF1 signalling. We show that IGF1-dependent signalling and proliferation were enhanced in ErbB2-overexpressing cells, whilst loss of ErbB2 expression by siRNA silencing reduced IGF1 signalling. Furthermore, IGFBP3 knockdown resulted in basal ERK and Akt activation in luminal epithelial cells and increased invasiveness and anchorage-independent colony formation in SKBR3 cells.ConclusionsThese data show IGFBP3 as a negative regulator of transformation and that its down-regulation enhances IGF1-dependent signalling. They also show that ErbB2 can up-regulate IGF1-dependent signalling, possibly via the regulated expression of IGFBP3.
Project description:BACKGROUND: Evidence of genetic association between the NRG1 (Neuregulin-1) gene and schizophrenia is now well-documented. Furthermore, several recent reports suggest association between schizophrenia and single-nucleotide polymorphisms (SNPs) in ERBB4, one of the receptors for Neuregulin-1. In this study, we have extended the previously published associations by investigating the involvement of all eight genes from the ERBB and NRG families for association with schizophrenia. METHODS: Eight genes from the ERBB and NRG families were tested for association to schizophrenia using a collection of 396 cases and 1,342 blood bank controls ascertained from Aberdeen, UK. A total of 365 SNPs were tested. Association testing of both alleles and genotypes was carried out using the fast Fisher's Exact Test (FET). To understand better the nature of the associations, all pairs of SNPs separated by >or= 0.5 cM with at least nominal evidence of association (P < 0.10) were tested for evidence of pairwise interaction by logistic regression analysis. RESULTS: 42 out of 365 tested SNPs in the eight genes from the ERBB and NRG gene families were significantly associated with schizophrenia (P < 0.05). Associated SNPs were located in ERBB4 and NRG1, confirming earlier reports. However, novel associations were also seen in NRG2, NRG3 and EGFR. In pairwise interaction tests, clear evidence of gene-gene interaction was detected for NRG1-NRG2, NRG1-NRG3 and EGFR-NRG2, and suggestive evidence was also seen for ERBB4-NRG1, ERBB4-NRG2, ERBB4-NRG3 and ERBB4-ERBB2. Evidence of intragenic interaction was seen for SNPs in ERBB4. CONCLUSION: These new findings suggest that observed associations between NRG1 and schizophrenia may be mediated through functional interaction not just with ERBB4, but with other members of the NRG and ERBB families. There is evidence that genetic interaction among these loci may increase susceptibility to schizophrenia.
Project description:Immune activation in chronic systolic heart failure (HF) correlates with disease severity and prognosis. Recombinant neuregulin-1 (rNRG-1) is being developed as a possible therapy for HF, based on the activation of ERBB receptors in cardiac cells. Work in animal models of HF led us to hypothesize that there may be direct effects of NRG-1 on immune system activation and inflammation. We investigated the expression of ERBB receptors and the effect of rNRG-1 isoform glial growth factor 2 (GGF2) in subpopulations of peripheral blood mononuclear cells (PB MNCs) in subjects with HF. We found that human monocytes express both ERBB2 and ERBB3 receptors, with high interindividual variability among subjects. Monocyte surface ERBB3 and TNF-α mRNA expression were inversely correlated in subjects with HF but not in human subjects without HF. GGF2 activation of ERBB signaling ex vivo inhibited LPS-induced TNF-α production, specifically in the CD14lowCD16+ population of monocytes in a phosphoinositide 3-kinase-dependent manner. GGF2 suppression of TNF-α correlated directly with the expression of ERBB3. In vivo, a single dose of intravenous GGF2 reduced TNF-α expression in PB MNCs of HF subjects participating in a phase I safety study of GGF2. These results support a role for ERBB3 signaling in the regulation of TNF-α production from CD14lowCD16+ monocytes and a need for further investigation into the clinical significance of NRG-1/ERBB signaling as a modulator of immune system function.NEW & NOTEWORTHY This study identified a novel role of neuregulin-1 (NRG-1)/ERBB signaling in the control of proinflammatory activation of monocytes. These results further improve our fundamental understanding of cardioprotective effects of NRG-1 in patients with heart failure.
Project description:Neutrophilic inflammation with prolonged neutrophil survival is common to many inflammatory conditions, including chronic obstructive pulmonary disease (COPD). There are few specific therapies that reverse neutrophilic inflammation, but uncovering mechanisms regulating neutrophil survival is likely to identify novel therapeutic targets. Screening of 367 kinase inhibitors in human neutrophils and a zebrafish tail fin injury model identified ErbBs as common targets of compounds that accelerated inflammation resolution. The ErbB inhibitors gefitinib, CP-724714, erbstatin and tyrphostin AG825 significantly accelerated apoptosis of human neutrophils, including neutrophils from people with COPD. Neutrophil apoptosis was also increased in Tyrphostin AG825 treated-zebrafish in vivo. Tyrphostin AG825 decreased peritoneal inflammation in zymosan-treated mice, and increased lung neutrophil apoptosis and macrophage efferocytosis in a murine acute lung injury model. Tyrphostin AG825 and knockdown of egfra and erbb2 by CRISPR/Cas9 reduced inflammation in zebrafish. Our work shows that inhibitors of ErbB kinases have therapeutic potential in neutrophilic inflammatory disease.
Project description:ErbB-2/HER2 is an oncogenic tyrosine kinase that regulates a signalling network by forming ligand-induced heterodimers with several growth factor receptors of the ErbB family. Hsp90 and co-chaperones regulate degradation of ErbB-2 but not other ErbB members. Here, we report that the role of Hsp90 in modulating the ErbB network extends beyond regulation of protein stability. The capacity of ErbB-2 to recruit ligand-bound receptors into active heterodimers is limited by Hsp90, which is dissociated from ErbB-2 following ligand-induced heterodimerization. We show that Hsp90 binds a specific loop within the kinase domain of ErbB-2, thereby restraining heterodimer formation and catalytic function. These results define a role for Hsp90 as a molecular switch regulating the ErbB signalling network by limiting formation of ErbB-2-centred receptor complexes.
Project description:A major obstacle in treating drug addiction is the severity of opiate withdrawal syndrome, which can lead to unwanted relapse. Mitragynine is the major alkaloid compound found in leaves of Mitragyna speciosa, a plant widely used by opiate addicts to mitigate the harshness of drug withdrawal. A series of experiments was conducted to investigate the effect of mitragynine on anxiety behavior, cortisol level and expression of stress pathway related genes in zebrafish undergoing morphine withdrawal phase. Adult zebrafish were subjected to two weeks chronic morphine exposure at 1.5 mg/L, followed by withdrawal for 24 hours prior to tests. Using the novel tank diving tests, we first showed that morphine-withdrawn zebrafish display anxiety-related swimming behaviors such as decreased exploratory behavior and increased erratic movement. Morphine withdrawal also elevated whole-body cortisol levels, which confirms the phenotypic stress-like behaviors. Exposing morphine-withdrawn fish to mitragynine however attenuates majority of the stress-related swimming behaviors and concomitantly lower whole-body cortisol level. Using real-time PCR gene expression analysis, we also showed that mitragynine reduces the mRNA expression of corticotropin releasing factor receptors and prodynorphin in zebrafish brain during morphine withdrawal phase, revealing for the first time a possible link between mitragynine's ability to attenuate anxiety during opiate withdrawal with the stress-related corticotropin pathway.
Project description:ErbB family members represent important biomarkers and drug targets for modern precision therapy. They have gained considerable importance as paradigms for oncoprotein addiction and personalized medicine. This review summarizes the current understanding of ErbB proteins in cell signalling and cancer and describes the molecular rationale of prominent cases of ErbB oncoprotein addiction in different cancer types. In addition, we have highlighted experimental technologies for the development of innovative cancer cell models that accurately predicted clinical ErbB drug efficacies. In the future, such cancer models might facilitate the identification and validation of physiologically relevant novel forms of oncoprotein and non-oncoprotein addiction or synthetic lethality. The identification of genotype-drug response relationships will further advance personalized oncology and improve drug efficacy in the clinic. Finally, we review the most important drugs targeting ErbB family members that are under investigation in clinical trials or that made their way already into clinical routine. Taken together, the functional characterization of ErbB oncoproteins have significantly increased our knowledge on predictive biomarkers, oncoprotein addiction and patient stratification and treatment.