Unknown

Dataset Information

0

Deletion of glycerol channel aquaporin-9 (Aqp9) impairs long-term blood glucose control in C57BL/6 leptin receptor-deficient (db/db) obese mice.


ABSTRACT: Deletion of the glycerol channel aquaporin-9 (Aqp9) reduces postprandial blood glucose levels in leptin receptor-deficient (db/db) obese mice on a C57BL/6 × C57BLKS mixed genetic background. Furthermore, shRNA-mediated reduction of Aqp9 expression reduces liver triacylglycerol (TAG) accumulation in a diet-induced rat model of obesity. The aim of this study was to investigate metabolic effects of Aqp9 deletion in coisogenic db/db mice of the C57BL/6 background. Aqp9(wt) db/db and Aqp9(-/-) db/db mice did not differ in body weight and liver TAG contents. On the C57BL/6 genetic background, we observed elevated plasma glucose in Aqp9(-/-) db/db mice (+1.1 mmol/L, life-time average), while plasma insulin concentration was reduced at the time of death. Glucose levels changed similarly in pentobarbital anesthetized, glucagon challenged Aqp9(wt) db/db and Aqp9(-/-) db/db mice. Liver transcriptional profiling did not detect differential gene expression between genotypes. Metabolite profiling revealed a sex independent increase in plasma glycerol (+55%) and glucose (+24%), and reduction in threonate (all at q < 0.1) in Aqp9(-/-) db/db mice compared to controls. Metabolite profiling thus confirms a role of AQP9 in glycerol metabolism of obese C57BL/6 db/db mice. In this animal model of obesity Aqp9 gene deletion elevates plasma glucose and does not alleviate hepatosteatosis.

SUBMITTER: Spegel P 

PROVIDER: S-EPMC4600382 | biostudies-literature | 2015 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Deletion of glycerol channel aquaporin-9 (Aqp9) impairs long-term blood glucose control in C57BL/6 leptin receptor-deficient (db/db) obese mice.

Spegel Peter P   Chawade Aakash A   Nielsen Søren S   Kjellbom Per P   Rützler Michael M  

Physiological reports 20150901 9


Deletion of the glycerol channel aquaporin-9 (Aqp9) reduces postprandial blood glucose levels in leptin receptor-deficient (db/db) obese mice on a C57BL/6 × C57BLKS mixed genetic background. Furthermore, shRNA-mediated reduction of Aqp9 expression reduces liver triacylglycerol (TAG) accumulation in a diet-induced rat model of obesity. The aim of this study was to investigate metabolic effects of Aqp9 deletion in coisogenic db/db mice of the C57BL/6 background. Aqp9(wt) db/db and Aqp9(-/-) db/db  ...[more]

Similar Datasets

2015-11-02 | E-MTAB-3526 | biostudies-arrayexpress
2015-09-28 | MTBLS219 | MetaboLights
| S-EPMC1805577 | biostudies-literature
2011-12-29 | GSE30140 | GEO
| S-EPMC5748773 | biostudies-literature
| S-EPMC5355111 | biostudies-other
| S-EPMC8503537 | biostudies-literature
| S-EPMC10095029 | biostudies-literature
2021-12-06 | E-MTAB-5849 | biostudies-arrayexpress
| S-EPMC4870646 | biostudies-other