Unknown

Dataset Information

0

Factors influencing success of clinical genome sequencing across a broad spectrum of disorders.


ABSTRACT: To assess factors influencing the success of whole-genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases or families across a broad spectrum of disorders in whom previous screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritization. We found that jointly calling variants across samples, filtering against both local and external databases, deploying multiple annotation tools and using familial transmission above biological plausibility contributed to accuracy. Overall, we identified disease-causing variants in 21% of cases, with the proportion increasing to 34% (23/68) for mendelian disorders and 57% (8/14) in family trios. We also discovered 32 potentially clinically actionable variants in 18 genes unrelated to the referral disorder, although only 4 were ultimately considered reportable. Our results demonstrate the value of genome sequencing for routine clinical diagnosis but also highlight many outstanding challenges.

SUBMITTER: Taylor JC 

PROVIDER: S-EPMC4601524 | biostudies-literature | 2015 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Factors influencing success of clinical genome sequencing across a broad spectrum of disorders.

Taylor Jenny C JC   Martin Hilary C HC   Lise Stefano S   Broxholme John J   Cazier Jean-Baptiste JB   Rimmer Andy A   Kanapin Alexander A   Lunter Gerton G   Fiddy Simon S   Allan Chris C   Aricescu A Radu AR   Attar Moustafa M   Babbs Christian C   Becq Jennifer J   Beeson David D   Bento Celeste C   Bignell Patricia P   Blair Edward E   Buckle Veronica J VJ   Bull Katherine K   Cais Ondrej O   Cario Holger H   Chapel Helen H   Copley Richard R RR   Cornall Richard R   Craft Jude J   Dahan Karin K   Davenport Emma E EE   Dendrou Calliope C   Devuyst Olivier O   Fenwick Aimée L AL   Flint Jonathan J   Fugger Lars L   Gilbert Rodney D RD   Goriely Anne A   Green Angie A   Greger Ingo H IH   Grocock Russell R   Gruszczyk Anja V AV   Hastings Robert R   Hatton Edouard E   Higgs Doug D   Hill Adrian A   Holmes Chris C   Howard Malcolm M   Hughes Linda L   Humburg Peter P   Johnson David D   Karpe Fredrik F   Kingsbury Zoya Z   Kini Usha U   Knight Julian C JC   Krohn Jonathan J   Lamble Sarah S   Langman Craig C   Lonie Lorne L   Luck Joshua J   McCarthy Davis D   McGowan Simon J SJ   McMullin Mary Frances MF   Miller Kerry A KA   Murray Lisa L   Németh Andrea H AH   Nesbit M Andrew MA   Nutt David D   Ormondroyd Elizabeth E   Oturai Annette Bang AB   Pagnamenta Alistair A   Patel Smita Y SY   Percy Melanie M   Petousi Nayia N   Piazza Paolo P   Piret Sian E SE   Polanco-Echeverry Guadalupe G   Popitsch Niko N   Powrie Fiona F   Pugh Chris C   Quek Lynn L   Robbins Peter A PA   Robson Kathryn K   Russo Alexandra A   Sahgal Natasha N   van Schouwenburg Pauline A PA   Schuh Anna A   Silverman Earl E   Simmons Alison A   Sørensen Per Soelberg PS   Sweeney Elizabeth E   Taylor John J   Thakker Rajesh V RV   Tomlinson Ian I   Trebes Amy A   Twigg Stephen Rf SR   Uhlig Holm H HH   Vyas Paresh P   Vyse Tim T   Wall Steven A SA   Watkins Hugh H   Whyte Michael P MP   Witty Lorna L   Wright Ben B   Yau Chris C   Buck David D   Humphray Sean S   Ratcliffe Peter J PJ   Bell John I JI   Wilkie Andrew Om AO   Bentley David D   Donnelly Peter P   McVean Gilean G  

Nature genetics 20150518 7


To assess factors influencing the success of whole-genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases or families across a broad spectrum of disorders in whom previous screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritization. We found that jointly calling variants across samples, filtering against both  ...[more]

Similar Datasets

| S-EPMC10568753 | biostudies-literature
| S-EPMC6145925 | biostudies-literature
| S-EPMC6445350 | biostudies-literature
| S-EPMC5662741 | biostudies-literature
| S-EPMC8049967 | biostudies-literature
| S-EPMC5556687 | biostudies-other
| S-EPMC6994950 | biostudies-literature
| S-EPMC8007575 | biostudies-literature
| S-EPMC10408679 | biostudies-literature
| S-EPMC9712115 | biostudies-literature