Unknown

Dataset Information

0

RelA-Induced Interferon Response Negatively Regulates Proliferation.


ABSTRACT: Both oncogenic and tumor-suppressor activities are attributed to the Nuclear Factor kappa B (NF-kB) pathway. Moreover, NF-kB may positively or negatively regulate proliferation. The molecular determinants of these opposing roles of NF-kB are unclear. Using primary human mammary epithelial cells (HMEC) as a model, we show that increased RelA levels and consequent increase in basal transcriptional activity of RelA induces IRF1, a target gene. Induced IRF1 upregulates STAT1 and IRF7, and in consort, these factors induce the expression of interferon response genes. Activation of the interferon pathway down-regulates CDK4 and up-regulates p27 resulting in Rb hypo-phosphorylation and cell cycle arrest. Stimulation of HMEC with IFN-? elicits similar phenotypic and molecular changes suggesting that basal activity of RelA and IFN-? converge on IRF1 to regulate proliferation. The anti-proliferative RelA-IRF1-CDK4 signaling axis is retained in ER+/HER2- breast tumors analyzed by The Cancer Genome Atlas (TCGA). Using immuno-histochemical analysis of breast tumors, we confirm the negative correlation between RelA levels and proliferation rate in ER+/HER2- breast tumors. These findings attribute an anti-proliferative tumor-suppressor role to basal RelA activity. Inactivation of Rb, down-regulation of RelA or IRF1, or upregulation of CDK4 or IRF2 rescues the RelA-IRF1-CDK4 induced proliferation arrest in HMEC and are points of disruption in aggressive tumors. Activity of the RelA-IRF1-CDK4 axis may explain favorable response to CDK4/6 inhibition observed in patients with ER+ Rb competent tumors.

SUBMITTER: Kochupurakkal BS 

PROVIDER: S-EPMC4604146 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications


Both oncogenic and tumor-suppressor activities are attributed to the Nuclear Factor kappa B (NF-kB) pathway. Moreover, NF-kB may positively or negatively regulate proliferation. The molecular determinants of these opposing roles of NF-kB are unclear. Using primary human mammary epithelial cells (HMEC) as a model, we show that increased RelA levels and consequent increase in basal transcriptional activity of RelA induces IRF1, a target gene. Induced IRF1 upregulates STAT1 and IRF7, and in consort  ...[more]

Similar Datasets

| S-EPMC3832446 | biostudies-literature
| S-EPMC3621033 | biostudies-literature
| S-EPMC6558015 | biostudies-literature
| S-EPMC4911600 | biostudies-literature
| S-EPMC5573678 | biostudies-literature
| S-EPMC2672892 | biostudies-other
| S-EPMC4357427 | biostudies-literature
| S-EPMC3361390 | biostudies-literature
| S-EPMC4869326 | biostudies-literature
| S-EPMC1234328 | biostudies-literature