Unknown

Dataset Information

0

Automation and Evaluation of the SOWH Test with SOWHAT.


ABSTRACT: The Swofford-Olsen-Waddell-Hillis (SOWH) test evaluates statistical support for incongruent phylogenetic topologies. It is commonly applied to determine if the maximum likelihood tree in a phylogenetic analysis is significantly different than an alternative hypothesis. The SOWH test compares the observed difference in log-likelihood between two topologies to a null distribution of differences in log-likelihood generated by parametric resampling. The test is a well-established phylogenetic method for topology testing, but it is sensitive to model misspecification, it is computationally burdensome to perform, and its implementation requires the investigator to make several decisions that each have the potential to affect the outcome of the test. We analyzed the effects of multiple factors using seven data sets to which the SOWH test was previously applied. These factors include a number of sample replicates, likelihood software, the introduction of gaps to simulated data, the use of distinct models of evolution for data simulation and likelihood inference, and a suggested test correction wherein an unresolved "zero-constrained" tree is used to simulate sequence data. To facilitate these analyses and future applications of the SOWH test, we wrote SOWHAT, a program that automates the SOWH test. We find that inadequate bootstrap sampling can change the outcome of the SOWH test. The results also show that using a zero-constrained tree for data simulation can result in a wider null distribution and higher p-values, but does not change the outcome of the SOWH test for most of the data sets tested here. These results will help others implement and evaluate the SOWH test and allow us to provide recommendations for future applications of the SOWH test. SOWHAT is available for download from https://github.com/josephryan/SOWHAT.

SUBMITTER: Church SH 

PROVIDER: S-EPMC4604836 | biostudies-literature | 2015 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Automation and Evaluation of the SOWH Test with SOWHAT.

Church Samuel H SH   Ryan Joseph F JF   Dunn Casey W CW  

Systematic biology 20150730 6


The Swofford-Olsen-Waddell-Hillis (SOWH) test evaluates statistical support for incongruent phylogenetic topologies. It is commonly applied to determine if the maximum likelihood tree in a phylogenetic analysis is significantly different than an alternative hypothesis. The SOWH test compares the observed difference in log-likelihood between two topologies to a null distribution of differences in log-likelihood generated by parametric resampling. The test is a well-established phylogenetic method  ...[more]

Similar Datasets

| S-EPMC7045991 | biostudies-literature
| S-EPMC5378447 | biostudies-literature
| S-EPMC9292892 | biostudies-literature
| S-EPMC6819363 | biostudies-literature
| S-EPMC1998875 | biostudies-literature
| S-EPMC7924721 | biostudies-literature
| S-EPMC8467677 | biostudies-literature
| S-EPMC311429 | biostudies-literature
| S-EPMC10901975 | biostudies-literature
| S-EPMC8760775 | biostudies-literature