Unknown

Dataset Information

0

Recurrent Glioblastomas Reveal Molecular Subtypes Associated with Mechanistic Implications of Drug-Resistance.


ABSTRACT: Previously, transcriptomic profiling studies have shown distinct molecular subtypes of glioblastomas. It has also been suggested that the recurrence of glioblastomas could be achieved by transcriptomic reprograming of tumors, however, their characteristics are not yet fully understood. Here, to gain the mechanistic insights on the molecular phenotypes of recurrent glioblastomas, gene expression profiling was performed on the 43 cases of glioblastomas including 15 paired primary and recurrent cases. Unsupervised clustering analyses revealed two subtypes of G1 and G2, which were characterized by proliferation and neuron-like gene expression traits, respectively. While the primary tumors were classified as G1 subtype, the recurrent glioblastomas showed two distinct expression types. Compared to paired primary tumors, the recurrent tumors in G1 subtype did not show expression alteration. By contrast, the recurrent tumors in G2 subtype showed expression changes from proliferation type to neuron-like one. We also observed the expression of stemness-related genes in G1 recurrent tumors and the altered expression of DNA-repair genes (i.e., AURK, HOX, MGMT, and MSH6) in the G2 recurrent tumors, which might be responsible for the acquisition of drug resistance mechanism during tumor recurrence in a subtype-specific manner. We suggest that recurrent glioblastomas may choose two different strategies for transcriptomic reprograming to escape the chemotherapeutic treatment during tumor recurrence. Our results might be helpful to determine personalized therapeutic strategy against heterogeneous glioma recurrence.

SUBMITTER: Kwon SM 

PROVIDER: S-EPMC4605710 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Recurrent Glioblastomas Reveal Molecular Subtypes Associated with Mechanistic Implications of Drug-Resistance.

Kwon So Mee SM   Kang Shin-Hyuk SH   Park Chul-Kee CK   Jung Shin S   Park Eun Sung ES   Lee Ju-Seog JS   Kim Se-Hyuk SH   Woo Hyun Goo HG  

PloS one 20151014 10


Previously, transcriptomic profiling studies have shown distinct molecular subtypes of glioblastomas. It has also been suggested that the recurrence of glioblastomas could be achieved by transcriptomic reprograming of tumors, however, their characteristics are not yet fully understood. Here, to gain the mechanistic insights on the molecular phenotypes of recurrent glioblastomas, gene expression profiling was performed on the 43 cases of glioblastomas including 15 paired primary and recurrent cas  ...[more]

Similar Datasets

| S-EPMC7724040 | biostudies-literature
| S-EPMC7128060 | biostudies-literature
| S-EPMC10079989 | biostudies-literature
| S-EPMC6493123 | biostudies-literature
| S-EPMC7094861 | biostudies-literature
| S-EPMC6146394 | biostudies-literature
| S-EPMC8788013 | biostudies-literature
2022-11-01 | GSE212748 | GEO
| S-EPMC7268490 | biostudies-literature
| S-EPMC9678737 | biostudies-literature