Unknown

Dataset Information

0

Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction.


ABSTRACT:

Background

Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO) production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC) is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery.

Methods and results

We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS) reduction, inducible nitric oxide synthase (iNOS) and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF), placental growth factor (PlGF) and reduction of NADPH-oxidase 4 (Nox4) expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM) expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction.

Conclusion

PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and pharmacological targeting of endothelial dysfunction may represent a promising tool for the treatment of delayed wound healing or chronic ulcers.

SUBMITTER: Scioli MG 

PROVIDER: S-EPMC4608702 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3059781 | biostudies-literature
| S-EPMC10546738 | biostudies-literature
| S-EPMC8149616 | biostudies-literature
| S-EPMC7587199 | biostudies-literature
| S-EPMC7425707 | biostudies-literature
| S-EPMC4672289 | biostudies-literature
| S-EPMC10711188 | biostudies-literature
| S-EPMC8274343 | biostudies-literature
| S-EPMC11012537 | biostudies-literature
| S-EPMC9899021 | biostudies-literature