Unknown

Dataset Information

0

Selective inhibition of esophageal cancer cells by combination of HDAC inhibitors and Azacytidine.


ABSTRACT: Esophageal cancers are highly aggressive tumors with poor prognosis despite some recent advances in surgical and radiochemotherapy treatment options. This study addressed the feasibility of drugs targeting epigenetic modifiers in esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) cells. We tested inhibition of histone deacetylases (HDACs) by SAHA, MS-275, and FK228, inhibition of DNA methyltransferases by Azacytidine (AZA) and Decitabine (DAC), and the effect of combination treatment using both types of drugs. The drug targets, HDAC1/2/3 and DNMT1, were expressed in normal esophageal epithelium and tumor cells of ESCC or EAC tissue specimens, as well as in non-neoplastic esophageal epithelial (Het-1A), ESCC (OE21, Kyse-270, Kyse-410), and EAC (OE33, SK-GT-4) cell lines. In vitro, HDAC activity, histone acetylation, and p21 expression were similarly affected in non-neoplastic, ESCC, and EAC cell lines post inhibitor treatment. Combined MS-275/AZA treatment, however, selectively targeted esophageal cancer cell lines by inducing DNA damage, cell viability loss, and apoptosis, and by decreasing cell migration. Non-neoplastic Het-1A cells were protected against HDACi (MS-275)/AZA treatment. RNA transcriptome analyses post MS-275 and/or AZA treatment identified novel regulated candidate genes (up: BCL6, Hes2; down: FAIM, MLKL), which were specifically associated with the treatment responses of esophageal cancer cells. In summary, combined HDACi/AZA treatment is efficient and selective for the targeting of esophageal cancer cells, despite similar target expression of normal and esophageal cancer epithelium, in vitro and in human esophageal carcinomas. The precise mechanisms of action of treatment responses involve novel candidate genes regulated by HDACi/AZA in esophageal cancer cells. Together, targeting of epigenetic modifiers in esophageal cancers may represent a potential future therapeutic approach.

SUBMITTER: Ahrens TD 

PROVIDER: S-EPMC4623041 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Selective inhibition of esophageal cancer cells by combination of HDAC inhibitors and Azacytidine.

Ahrens Theresa D TD   Timme Sylvia S   Hoeppner Jens J   Ostendorp Jenny J   Hembach Sina S   Follo Marie M   Hopt Ulrich T UT   Werner Martin M   Busch Hauke H   Boerries Melanie M   Lassmann Silke S  

Epigenetics 20150101 5


Esophageal cancers are highly aggressive tumors with poor prognosis despite some recent advances in surgical and radiochemotherapy treatment options. This study addressed the feasibility of drugs targeting epigenetic modifiers in esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) cells. We tested inhibition of histone deacetylases (HDACs) by SAHA, MS-275, and FK228, inhibition of DNA methyltransferases by Azacytidine (AZA) and Decitabine (DAC), and the effect of combin  ...[more]

Similar Datasets

2015-04-29 | E-GEOD-57130 | biostudies-arrayexpress
2015-04-29 | GSE57130 | GEO
| S-EPMC3408970 | biostudies-literature
| S-EPMC8750966 | biostudies-literature
| S-EPMC8698907 | biostudies-literature
| S-EPMC3083574 | biostudies-literature
| EGAS00001002637 | EGA
| S-EPMC3734831 | biostudies-other
2013-04-22 | E-GEOD-43010 | biostudies-arrayexpress
| S-EPMC8556368 | biostudies-literature