Impact of cis-acting elements' frequency in transcription activity in dicot and monocot plants.
Ontology highlight
ABSTRACT: The production of new cultivars via recombinant DNA technology is important in applied agriculture. Promoters play fundamental roles in successful transformation and gene expression. Fragments of the upstream regulatory region of the movement protein gene of the Tomato yellow leaf curl virus (TYLCV; two fragments) and Watermelon chlorotic stunt virus (WmCSV, two fragments) and one fragment of the coat protein putative promoter of TYLCV (CPTY-pro) were isolated to assess their abilities to drive expression in monocot and dicot plants. We used bioinformatic analyses to identify tentative motifs in the fragments. The five promoter fragments were isolated, fused with the GUS reporter gene, and transformed into tomato, watermelon, and rice plantlets via Agrobacterium infiltration. GUS expression driven by each putative promoter was analysed using histochemical and fluorometric analyses. In both dicots and the monocots, the highest level of GUS expression was obtained using a truncated regulatory region from TYLCV (MMPTY-pro) followed by a truncated regulatory region from WmCSV (MMPWm-pro). However, the corresponding full-length fragments from TYLCV and WmCSV showed essentially equivalent expression levels in the fluorometric GUS assay compared with the enhanced Cauliflower mosaic virus e35S-pro. In addition, CPTY-pro showed no expression in either the dicots or the monocot. This study demonstrated that MMPTY-pro and MMPWm-pro may be useful as plant promoters.
SUBMITTER: Abu El-Heba GA
PROVIDER: S-EPMC4624133 | biostudies-literature | 2015 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA