Unknown

Dataset Information

0

Shear-Thinning Supramolecular Hydrogels with Secondary Autonomous Covalent Crosslinking to Modulate Viscoelastic Properties In Vivo.


ABSTRACT: Clinical percutaneous delivery of synthetically engineered hydrogels remains limited due to challenges posed by crosslinking kinetics - too fast leads to delivery failure, too slow limits material retention. To overcome this challenge, we exploit supramolecular assembly to localize hydrogels at the injection site and introduce subsequent covalent crosslinking to control final material properties. Supramolecular gels were designed through the separate pendant modifications of hyaluronic acid (HA) by the guest-host pair cyclodextrin and adamantane, enabling shear-thinning injection and high target site retention (>98%). Secondary covalent crosslinking occurred via addition of thiols and Michael-acceptors (i.e., methacrylates, acrylates, vinyl sulfones) on HA and increased hydrogel moduli (E=25.0±4.5kPa) and stability (>3.5 fold in vivo at 28 days). Application of the dual-crosslinking hydrogel to a myocardial infarct model showed improved outcomes relative to untreated and supramolecular hydrogel alone controls, demonstrating its potential in a range of applications where the precise delivery of hydrogels with tunable properties is desired.

SUBMITTER: Rodell CB 

PROVIDER: S-EPMC4624407 | biostudies-literature | 2015 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Shear-Thinning Supramolecular Hydrogels with Secondary Autonomous Covalent Crosslinking to Modulate Viscoelastic Properties <i>In Vivo</i>.

Rodell Christopher B CB   MacArthur John W JW   Dorsey Shauna M SM   Wade Ryan J RJ   Wang Leo L LL   Woo Y Joseph YJ   Burdick Jason A JA  

Advanced functional materials 20141212 4


Clinical percutaneous delivery of synthetically engineered hydrogels remains limited due to challenges posed by crosslinking kinetics - too fast leads to delivery failure, too slow limits material retention. To overcome this challenge, we exploit supramolecular assembly to localize hydrogels at the injection site and introduce subsequent covalent crosslinking to control final material properties. Supramolecular gels were designed through the separate pendant modifications of hyaluronic acid (HA)  ...[more]

Similar Datasets

| S-EPMC7317699 | biostudies-literature
| S-EPMC7437955 | biostudies-literature
| S-EPMC6774062 | biostudies-literature
| S-EPMC4212795 | biostudies-other
| S-EPMC3607018 | biostudies-literature
| S-EPMC6085890 | biostudies-literature
| S-EPMC5727472 | biostudies-literature
| S-EPMC9781382 | biostudies-literature
| S-EPMC3085257 | biostudies-literature
| S-EPMC4283780 | biostudies-literature