Project description:Recombination is thought to be rare within Salmonella, as evidenced by absence of gene transfer among SARC strains that represent the broad genetic diversity of the eight primary subspecies of this common facultative intracellular pathogen. We adopted a phylogenetic approach to assess recombination within the mutS gene of 70 SARB strains, a genetically homogeneous population of Salmonella enterica subspecies I strains, which have in common the ability to infect warm-blooded animals. We report here that SARB strains show evidence for widespread recombinational exchange in contrast to results obtained with strains exhibiting species-level genetic variation. Besides extensive allele shuffling, SARB strains showed notably larger recombinagenic patch sizes for mutS (at least approximately 1.1 kb) than previously reported for S. enterica SARC strains. Explaining these experimental dichotomies provides important insight for understanding microbial evolution, because they suggest likely ecologic and genetic barriers that limit extensive gene transfer in the feral setting.
Project description:BackgroundHorizontal or lateral transfer of genetic material between distantly related prokaryotes has been shown to play a major role in the evolution of bacterial and archaeal genomes, but exchange of genes between prokaryotes and eukaryotes is not as well understood. In particular, gene flow from eukaryotes to prokaryotes is rarely documented with strong support, which is unusual since prokaryotic genomes appear to readily accept foreign genes.ResultsHere, we show that abundant marine cyanobacteria in the related genera Synechococcus and Prochlorococcus acquired a key Calvin cycle/glycolytic enzyme from a eukaryote. Two non-homologous forms of fructose bisphosphate aldolase (FBA) are characteristic of eukaryotes and prokaryotes respectively. However, a eukaryotic gene has been inserted immediately upstream of the ancestral prokaryotic gene in several strains (ecotypes) of Synechococcus and Prochlorococcus. In one lineage this new gene has replaced the ancestral gene altogether. The eukaryotic gene is most closely related to the plastid-targeted FBA from red algae. This eukaryotic-type FBA once replaced the plastid/cyanobacterial type in photosynthetic eukaryotes, hinting at a possible functional advantage in Calvin cycle reactions. The strains that now possess this eukaryotic FBA are scattered across the tree of Synechococcus and Prochlorococcus, perhaps because the gene has been transferred multiple times among cyanobacteria, or more likely because it has been selectively retained only in certain lineages.ConclusionA gene for plastid-targeted FBA has been transferred from red algae to cyanobacteria, where it has inserted itself beside its non-homologous, functional analogue. Its current distribution in Prochlorococcus and Synechococcus is punctate, suggesting a complex history since its introduction to this group.
Project description:BackgroundHorizontal gene transfer (HGT) has been widely identified in complete prokaryotic genomes. However, the roles of HGT among members of a microbial community and in evolution remain largely unknown. With the emergence of metagenomics, it is nontrivial to investigate such horizontal flow of genetic materials among members in a microbial community from the natural environment. Because of the lack of suitable methods for metagenomics gene transfer detection, microorganisms from a low-complexity community acid mine drainage (AMD) with near-complete genomes were used to detect possible gene transfer events and suggest the biological significance.ResultsUsing the annotation of coding regions by the current tools, a phylogenetic approach, and an approximately unbiased test, we found that HGTs in AMD organisms are not rare, and we predicted 119 putative transferred genes. Among them, 14 HGT events were determined to be transfer events among the AMD members. Further analysis of the 14 transferred genes revealed that the HGT events affected the functional evolution of archaea or bacteria in AMD, and it probably shaped the community structure, such as the dominance of G-plasma in archaea in AMD through HGT.ConclusionsOur study provides a novel insight into HGT events among microorganisms in natural communities. The interconnectedness between HGT and community evolution is essential to understand microbial community formation and development.
Project description:Mobile genetic elements (MGEs) are crucial for horizontal gene transfer (HGT) in bacteria and facilitate their rapid evolution and adaptation. MGEs include plasmids, integrative and conjugative elements, transposons, insertion sequences and bacteriophages. Notably, the spread of antimicrobial resistance genes (ARGs), which poses a serious threat to public health, is primarily attributable to HGT through MGEs. This mini-review aims to provide an overview of the mechanisms by which MGEs mediate HGT in microbes. Specifically, the behaviour of conjugative plasmids in different environments and conditions was discussed, and recent methodologies for tracing the dynamics of MGEs were summarised. A comprehensive understanding of the mechanisms underlying HGT and the role of MGEs in bacterial evolution and adaptation is important to develop strategies to combat the spread of ARGs.
Project description:Mobile genetic elements (MGEs) encoding virulence and resistance genes are widespread in bacterial pathogens, but it has remained unclear how they occasionally jump to new host species. Staphylococcus aureus clones exchange MGEs such as S. aureus pathogenicity islands (SaPIs) with high frequency via helper phages. Here we report that the S. aureus ST395 lineage is refractory to horizontal gene transfer (HGT) with typical S. aureus but exchanges SaPIs with other species and genera including Staphylococcus epidermidis and Listeria monocytogenes. ST395 produces an unusual wall teichoic acid (WTA) resembling that of its HGT partner species. Notably, distantly related bacterial species and genera undergo efficient HGT with typical S. aureus upon ectopic expression of S. aureus WTA. Combined with genomic analyses, these results indicate that a 'glycocode' of WTA structures and WTA-binding helper phages permits HGT even across long phylogenetic distances thereby shaping the evolution of Gram-positive pathogens.
Project description:Galactofuranose (Gal(f)) is a novel sugar absent in mammals but present in a variety of pathogenic microbes, often within glycoconjugates that play critical roles in cell surface formation and the infectious cycle. In prokaryotes, Gal(f) is synthesized as the nucleotide sugar UDP-Gal(f) by UDP-galactopyranose mutase (UGM) (gene GLF). Here we used a combinatorial bioinformatics screen to identify a family of candidate eukaryotic GLFs that had previously escaped detection. GLFs from three pathogens, two protozoa (Leishmania major and Trypanosoma cruzi) and one fungus (Cryptococcus neoformans), had UGM activity when expressed in Escherichia coli and assayed in vivo and/or in vitro. Eukaryotic GLFs are closely related to each other but distantly related to prokaryotic GLFs, showing limited conservation of core residues around the substrate-binding site and flavin adenine dinucleotide binding domain. Several eukaryotes not previously investigated for Gal(f) synthesis also showed strong GLF homologs with conservation of key residues. These included other fungi, the alga Chlamydomonas and the algal phleovirus Feldmannia irregularis, parasitic nematodes (Brugia, Onchocerca, and Strongyloides) and Caenorhabditis elegans, and the urochordates Halocynthia and Cionia. The C. elegans open reading frame was shown to encode UGM activity. The GLF phylogenetic distribution suggests that Gal(f) synthesis may occur more broadly in eukaryotes than previously supposed. Overall, GLF/Gal(f) synthesis in eukaryotes appears to occur with a disjunct distribution and often in pathogenic species, similar to what is seen in prokaryotes. Thus, UGM inhibition may provide an attractive drug target in those eukaryotes where Gal(f) plays critical roles in cellular viability and virulence.
Project description:BACKGROUND: In addition to vertical transmission, organisms can also acquire genes from other distantly related species or from their extra-chromosomal elements (plasmids and viruses) via horizontal gene transfer (HGT). It has been suggested that phages represent substantial forces in prokaryotic evolution. In eukaryotes, retroviruses, which can integrate into host genome as an obligate step in their replication strategy, comprise approximately 8% of the human genome. Unlike retroviruses, few members of other virus families are known to transfer genes to host genomes. RESULTS: Here we performed a systematic search for sequences related to circular single-stranded DNA (ssDNA) viruses in publicly available eukaryotic genome databases followed by comprehensive phylogenetic analysis. We conclude that the replication initiation protein (Rep)-related sequences of geminiviruses, nanoviruses and circoviruses have been frequently transferred to a broad range of eukaryotic species, including plants, fungi, animals and protists. Some of the transferred viral genes were conserved and expressed, suggesting that these genes have been coopted to assume cellular functions in the host genomes. We also identified geminivirus-like and parvovirus-like transposable elements in genomes of fungi and lower animals, respectively, and thereby provide direct evidence that eukaryotic transposons could derive from ssDNA viruses. CONCLUSIONS: Our discovery extends the host range of circular ssDNA viruses and sheds light on the origin and evolution of these viruses. It also suggests that ssDNA viruses act as an unforeseen source of genetic innovation in their hosts.
Project description:Horizontal gene transfer commonly occurs from cells to viruses but rarely occurs from viruses to their host cells, with the exception of retroviruses and some DNA viruses. However, extensive sequence similarity searches in public genome databases for various organisms showed that the capsid protein and RNA-dependent RNA polymerase genes from totiviruses and partitiviruses have widespread homologs in the nuclear genomes of eukaryotic organisms, including plants, arthropods, fungi, nematodes, and protozoa. PCR amplification and sequencing as well as comparative evidence of junction coverage between virus and host sequences support the conclusion that these viral homologs are real and occur in eukaryotic genomes. Sequence comparison and phylogenetic analysis suggest that these genes were likely transferred horizontally from viruses to eukaryotic genomes. Furthermore, we present evidence showing that some of the transferred genes are conserved and expressed in eukaryotic organisms and suggesting that these viral genes are also functional in the recipient genomes. Our findings imply that horizontal transfer of double-stranded RNA viral genes is widespread among eukaryotes and may give rise to functionally important new genes, thus entailing that RNA viruses may play significant roles in the evolution of eukaryotes.
Project description:Currently the shikimate pathway is reported as a metabolic feature of prokaryotes, ascomycete fungi, apicomplexans, and plants. The plant shikimate pathway enzymes have similarities to prokaryote homologues and are largely active in chloroplasts, suggesting ancestry from the plastid progenitor genome. Toxoplasma gondii, which also possesses an alga-derived plastid organelle, encodes a shikimate pathway with similarities to ascomycete genes, including a five-enzyme pentafunctional arom. These data suggests that the shikimate pathway and the pentafunctional arom either had an ancient origin in the eukaryotes or was conveyed by eukaryote-to-eukaryote horizontal gene transfer (HGT). We expand sampling and analyses of the shikimate pathway genes to include the oomycetes, ciliates, diatoms, basidiomycetes, zygomycetes, and the green and red algae. Sequencing of cDNA from Tetrahymena thermophila confirmed the presence of a pentafused arom, as in fungi and T. gondii. Phylogenies and taxon distribution suggest that the arom gene fusion event may be an ancient eukaryotic innovation. Conversely, the Plantae lineage (represented here by both Viridaeplantae and the red algae) acquired different prokaryotic genes for all seven steps of the shikimate pathway. Two of the phylogenies suggest a derivation of the Plantae genes from the cyanobacterial plastid progenitor genome, but if the full Plantae pathway was originally of cyanobacterial origin, then the five other shikimate pathway genes were obtained from a minimum of two other eubacterial genomes. Thus, the phylogenies demonstrate both separate HGTs and shared derived HGTs within the Plantae clade either by primary HGT transfer or secondarily via the plastid progenitor genome. The shared derived characters support the holophyly of the Plantae lineage and a single ancestral primary plastid endosymbiosis. Our analyses also pinpoints a minimum of 50 gene/domain loss events, demonstrating that loss and replacement events have been an important process in eukaryote genome evolution.
Project description:Horizontal gene transfer (HGT) is a major force in microbial evolution. Previous studies have suggested that a variety of factors, including restricted recombination and toxicity of foreign gene products, may act as barriers to the successful integration of horizontally transferred genes. This study identifies an additional central barrier to HGT-the lack of co-adaptation between the codon usage of the transferred gene and the tRNA pool of the recipient organism. Analyzing the genomic sequences of more than 190 microorganisms and the HGT events that have occurred between them, we show that the number of genes that were horizontally transferred between organisms is positively correlated with the similarity between their tRNA pools. Those genes that are better adapted to the tRNA pools of the target genomes tend to undergo more frequent HGT. At the community (or environment) level, organisms that share a common ecological niche tend to have similar tRNA pools. These results remain significant after controlling for diverse ecological and evolutionary parameters. Our analysis demonstrates that there are bi-directional associations between the similarity in the tRNA pools of organisms and the number of HGT events occurring between them. Similar tRNA pools between a donor and a host tend to increase the probability that a horizontally acquired gene will become fixed in its new genome. Our results also suggest that frequent HGT may be a homogenizing force that increases the similarity in the tRNA pools of organisms within the same community.