Unknown

Dataset Information

0

Proteomics studies of the interactome of RNA polymerase II C-terminal repeated domain.


ABSTRACT: Eukaryotic RNA polymerase II contains a C-terminal repeated domain (CTD) consisting of 52 consensus heptad repeats of Y1S2P3T4S5P6S7 that mediate interactions with many cellular proteins to regulate transcription elongation, RNA processing and chromatin structure. A number of CTD-binding proteins have been identified and the crystal structures of several protein-CTD complexes have demonstrated considerable conformational flexibility of the heptad repeats in those interactions. Furthermore, phosphorylation of the CTD at tyrosine, serine and threonine residues can regulate the CTD-protein interactions. Although the interactions of CTD with specific proteins have been elucidated at the atomic level, the capacity and specificity of the CTD-interactome in mammalian cells is not yet determined.A proteomic study was conducted to examine the mammalian CTD-interactome. We utilized six synthetic peptides each consisting of four consensus CTD-repeats with different combinations of serine and tyrosine phosphorylation as affinity-probes to pull-down nuclear proteins from HeLa cells. The pull-down fractions were then analyzed by MUDPIT mass spectrometry, which identified 100 proteins with the majority from the phospho-CTD pull-downs. Proteins pulled-down by serine-phosphorylated CTD-peptides included those containing the previously defined CTD-interacting domain (CID). Using SILAC mass spectrometry, we showed that the in vivo interaction of RNA polymerase II with the mammalian CID-containing RPRD1B is disrupted by CID mutation. We also showed that the CID from four mammalian proteins interacted with pS2-phosphorylated but not pY1pS2-doubly phosphorylated CTD-peptides. However, we also found proteins that were preferentially pulled-down by pY1pS2- or pY1pS5-doubly phosphorylated CTD-peptides. We prepared an antibody against tyrosine phosphorylated CTD and showed that ionizing radiation (IR) induced a transient increase in CTD tyrosine phosphorylation by immunoblotting. Combining SILAC and IMAC purification of phospho-peptides, we found that IR regulated the phosphorylation at four CTD tyrosine sites in different ways.Upon phosphorylation, the 52 repeats of the CTD have the capacity to generate a large number of binding sites for cellular proteins. This study confirms previous findings that serine phosphorylation stimulates whereas tyrosine phosphorylation inhibits the protein-binding activity of the CTD. However, tyrosine phosphorylation of the CTD can also stimulate other CTD-protein interactions. The CTD-peptide affinity pull-down method described here can be adopted to survey the mammalian CTD-interactome in various cell types and under different biological conditions.

SUBMITTER: Pineda G 

PROVIDER: S-EPMC4627417 | biostudies-literature | 2015 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Proteomics studies of the interactome of RNA polymerase II C-terminal repeated domain.

Pineda Gabriel G   Shen Zhouxin Z   de Albuquerque Claudio Ponte CP   Reynoso Eduardo E   Chen Jeffrey J   Tu Chi-Chiang CC   Tang Wingchung W   Briggs Steve S   Zhou Huilin H   Wang Jean Y J JY  

BMC research notes 20151029


<h4>Background</h4>Eukaryotic RNA polymerase II contains a C-terminal repeated domain (CTD) consisting of 52 consensus heptad repeats of Y1S2P3T4S5P6S7 that mediate interactions with many cellular proteins to regulate transcription elongation, RNA processing and chromatin structure. A number of CTD-binding proteins have been identified and the crystal structures of several protein-CTD complexes have demonstrated considerable conformational flexibility of the heptad repeats in those interactions.  ...[more]

Similar Datasets

| MSV000078867 | MassIVE
| S-EPMC6697640 | biostudies-literature
| S-EPMC122907 | biostudies-literature
| S-EPMC10104585 | biostudies-literature
| S-EPMC3988834 | biostudies-literature
| S-EPMC5437306 | biostudies-literature
| S-EPMC4362643 | biostudies-literature
| S-EPMC118035 | biostudies-literature
| S-EPMC4217226 | biostudies-literature
| S-EPMC3646058 | biostudies-literature