Physicochemical Aspects of the Plasmodium chabaudi-Infected Erythrocyte.
Ontology highlight
ABSTRACT: Membrane electrochemical potential is a feature of the molecular profile of the cell membrane and the two-dimensional arrangement of its charge-bearing molecules. Plasmodium species, the causative agents of malaria, are intracellular parasites that remodel host erythrocytes by expressing their own proteins on erythrocyte membranes. Although various aspects of the modifications made to the host erythrocyte membrane have been extensively studied in some human Plasmodium species (such as Plasmodium falciparum), details of the structural and molecular biological modifications made to host erythrocytes by nonhuman Plasmodium parasites have not been studied. We employed zeta potential analysis of erythrocytes parasitized by P. chabaudi, a nonhuman Plasmodium parasite. From these measurements, we found that the surface potential shift was more negative for P. chabaudi-infected erythrocytes than for P. falciparum-infected erythrocytes. However, electron microscopic analysis of the surface of P. chabaudi-infected erythrocytes did not reveal any modifications as compared with nonparasitized erythrocytes. These results suggest that differences in the membrane modifications found herein represent unique attributes related to the pathogenesis profiles of the two different malaria parasite species in different host animals and that these features have been acquired through parasite adaptations acquired over long evolutionary time periods.
SUBMITTER: Hayakawa EH
PROVIDER: S-EPMC4628737 | biostudies-literature | 2015
REPOSITORIES: biostudies-literature
ACCESS DATA