Unknown

Dataset Information

0

Neither Single nor a Combination of Routine Laboratory Parameters can Discriminate between Gram-positive and Gram-negative Bacteremia.


ABSTRACT: Adequate early empiric antibiotic therapy is pivotal for the outcome of patients with bloodstream infections. In clinical practice the use of surrogate laboratory parameters is frequently proposed to predict underlying bacterial pathogens; however there is no clear evidence for this assumption. In this study, we investigated the discriminatory capacity of predictive models consisting of routinely available laboratory parameters to predict the presence of Gram-positive or Gram-negative bacteremia. Major machine learning algorithms were screened for their capacity to maximize the area under the receiver operating characteristic curve (ROC-AUC) for discriminating between Gram-positive and Gram-negative cases. Data from 23,765 patients with clinically suspected bacteremia were screened and 1,180 bacteremic patients were included in the study. A relative predominance of Gram-negative bacteremia (54.0%), which was more pronounced in females (59.1%), was observed. The final model achieved 0.675 ROC-AUC resulting in 44.57% sensitivity and 79.75% specificity. Various parameters presented a significant difference between both genders. In gender-specific models, the discriminatory potency was slightly improved. The results of this study do not support the use of surrogate laboratory parameters for predicting classes of causative pathogens. In this patient cohort, gender-specific differences in various laboratory parameters were observed, indicating differences in the host response between genders.

SUBMITTER: Ratzinger F 

PROVIDER: S-EPMC4629184 | biostudies-literature | 2015 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Neither Single nor a Combination of Routine Laboratory Parameters can Discriminate between Gram-positive and Gram-negative Bacteremia.

Ratzinger Franz F   Dedeyan Michel M   Rammerstorfer Matthias M   Perkmann Thomas T   Burgmann Heinz H   Makristathis Athanasios A   Dorffner Georg G   Loetsch Felix F   Blacky Alexander A   Ramharter Michael M  

Scientific reports 20151102


Adequate early empiric antibiotic therapy is pivotal for the outcome of patients with bloodstream infections. In clinical practice the use of surrogate laboratory parameters is frequently proposed to predict underlying bacterial pathogens; however there is no clear evidence for this assumption. In this study, we investigated the discriminatory capacity of predictive models consisting of routinely available laboratory parameters to predict the presence of Gram-positive or Gram-negative bacteremia  ...[more]

Similar Datasets

| S-EPMC10566101 | biostudies-literature
| S-EPMC9474441 | biostudies-literature
| S-EPMC7504969 | biostudies-literature
| S-EPMC4325795 | biostudies-literature
| S-EPMC7674500 | biostudies-literature
| S-EPMC8418508 | biostudies-literature
| S-EPMC4515113 | biostudies-literature
| S-EPMC9339149 | biostudies-literature
2010-05-25 | E-GEOD-6535 | biostudies-arrayexpress
2007-12-01 | GSE6535 | GEO