Neurotoxicity induced by zinc oxide nanoparticles: age-related differences and interaction.
Ontology highlight
ABSTRACT: This study mainly investigated the neurotoxicity induced by zinc oxide nanoparticle (ZnO NP) in different-aged mice and the interaction between age and ZnO NP exposure. Sixty adult and old male C57BL/6J mice were assigned to four groups based on a two-factor (age and ZnO NP exposure) design. Results showed that ZnO NPs (5.6?mg/kg, intraperitoneal) induced increased production of pro-inflammatory cytokines in the serum and the brain of mice. A synergistic reaction between aging and ZnO NP exposure occurred regarding serum interleukin 1 (IL-1) and interleukin 6 (IL-6). In the brain, increased oxidative stress level, impaired learning and memory abilities, and hippocampal pathological changes were identified, especially in old mice, following ZnO NP exposure. Then, a potential mechanism of cognitive impairment was examined. The contents of hippocampal cAMP response element binding protein (CREB), phosphorylated CREB, synapsin I, and cAMP were decreased in an age-dependent manner, and the most substantial decrease occurred in old mice treated with ZnO NPs. These findings demonstrated for the first time that aging and ZnO NP exposure synergistically influenced systemic inflammation, and indicated old individuals were more susceptible to ZnO NP-induced neurotoxicity. One of the mechanisms might due to the supression of cAMP/CREB signaling.
SUBMITTER: Tian L
PROVIDER: S-EPMC4630782 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA