Project description:Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump-probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueation of stishovite appears to be kinetically limited to 1.4±0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. These are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD.
Project description:Plasticity is ubiquitous and plays a critical role in material deformation and damage; it inherently involves the atomistic length scale and picosecond time scale. A fundamental understanding of the elastic-plastic deformation transition, in particular, incipient plasticity, has been a grand challenge in high-pressure and high-strain-rate environments, impeded largely by experimental limitations on spatial and temporal resolution. Here, we report femtosecond MeV electron diffraction measurements visualizing the three-dimensional (3D) response of single-crystal aluminum to the ultrafast laser-induced compression. We capture lattice transitioning from a purely elastic to a plastically relaxed state within 5 ps, after reaching an elastic limit of ~25 GPa. Our results allow the direct determination of dislocation nucleation and transport that constitute the underlying defect kinetics of incipient plasticity. Large-scale molecular dynamics simulations show good agreement with the experiment and provide an atomic-level description of the dislocation-mediated plasticity.
Project description:SignificanceCompressed ultrafast photography (CUP) is currently the world's fastest single-shot imaging technique. Through the integration of compressed sensing and streak imaging, CUP can capture a transient event in a single camera exposure with imaging speeds from thousands to trillions of frames per second, at micrometer-level spatial resolutions, and in broad sensing spectral ranges.AimThis tutorial aims to provide a comprehensive review of CUP in its fundamental methods, system implementations, biomedical applications, and prospect.ApproachA step-by-step guideline to CUP's forward model and representative image reconstruction algorithms is presented with sample codes and illustrations in Matlab and Python. Then, CUP's hardware implementation is described with a focus on the representative techniques, advantages, and limitations of the three key components-the spatial encoder, the temporal shearing unit, and the two-dimensional sensor. Furthermore, four representative biomedical applications enabled by CUP are discussed, followed by the prospect of CUP's technical advancement.ConclusionsCUP has emerged as a state-of-the-art ultrafast imaging technology. Its advanced imaging ability and versatility contribute to unprecedented observations and new applications in biomedicine. CUP holds great promise in improving technical specifications and facilitating the investigation of biomedical processes.
Project description:The growth of α-quartz-based piezoelectric thin films opens the door to higher-frequency electromechanical devices than those available through top-down approaches. We report on the growth of SiO2/GeO2 thin films by pulsed laser deposition and their subsequent crystallization. By introducing a devitrifying agent uniformly within the film, we are able to obtain the α-quartz phase in the form of platelets with lateral sizes above 100 μm at accessible temperatures. Films containing different amounts of devitrifying agent are investigated, and their crystallinity is ascertained with X-ray diffraction and electron back-scatter diffraction. Our work highlights the difficulty in crystallization when competing phases arise that have markedly different crystalline orientation.
Project description:Existing streak-camera-based two-dimensional (2D) ultrafast imaging techniques are limited by long acquisition time, the trade-off between spatial and temporal resolutions, and a reduced field of view. They also require additional components, customization, or active illumination. Here we develop compressed ultrafast tomographic imaging (CUTI), which passively records 2D transient events with a standard streak camera. By grafting the concept of computed tomography to the spatiotemporal domain, the operations of temporal shearing and spatiotemporal integration in a streak camera's data acquisition can be equivalently expressed as the spatiotemporal projection of an (x,y,t) datacube from a certain angle. Aided by a new, to the best of our knowledge, compressed-sensing reconstruction algorithm, the 2D transient event can be accurately recovered in a few measurements. CUTI is exhibited as a new imaging mode universally adaptable to most streak cameras. Implemented in an image-converter streak camera, CUTI captures the sequential arrival of two spatially modulated ultrashort ultraviolet laser pulses at 0.5 trillion frames per second. Applied to a rotating-mirror streak camera, CUTI records an amination of fast-bouncing balls at 5,000 frames per second.
Project description:The growth of lamellar crystals has been studied in particular for spherulites in polymeric materials. Even though such spherulitic structures and their growth are of crucial importance for the mechanical and optical properties of the resulting polymeric materials, several issues regarding the residual stress remain unresolved in the wider context of crystal growth. To gain further insight into micro-mechanical forces during the crystallization process of lamellar crystals in polymeric materials, herein, we introduce tetraarylsuccinonitrile (TASN), which generates relatively stable radicals with yellow fluorescence upon homolytic cleavage at the central C-C bond in response to mechanical stress, into crystalline polymers. The obtained crystalline polymers with TASN at the center of the polymer chain allow not only to visualize the stress arising from micro-mechanical forces during polymer crystallization via fluorescence microscopy but also to evaluate the micro-mechanical forces upon growing polymer lamellar crystals by electron paramagnetic resonance, which is able to detect the radicals generated during polymer crystallization.
Project description:SiO2 is one of the most fundamental constituents in planetary bodies, being an essential building block of major mineral phases in the crust and mantle of terrestrial planets (1-10 ME). Silica at depths greater than 300 km may be present in the form of the rutile-type, high pressure polymorph stishovite (P42/mnm) and its thermodynamic stability is of great interest for understanding the seismic and dynamic structure of planetary interiors. Previous studies on stishovite via static and dynamic (shock) compression techniques are contradictory and the observed differences in the lattice-level response is still not clearly understood. Here, laser-induced shock compression experiments at the LCLS- and SACLA XFEL light-sources elucidate the high-pressure behavior of stishovite on the lattice-level under in situ conditions on the Hugoniot to pressures above 300 GPa. We find stishovite is still (meta-)stable at these conditions, and does not undergo any phase transitions. This contradicts static experiments showing structural transformations to the CaCl2, α-PbO2 and pyrite-type structures. However, rate-limited kinetic hindrance may explain our observations. These results are important to our understanding into the validity of EOS data from nanosecond experiments for geophysical applications.
Project description:The single-shot compressed ultrafast photography (CUP) camera is the fastest receive-only camera in the world. In this Letter, we introduce an external CCD camera and a space- and intensity-constrained (SIC) reconstruction algorithm to improve the image quality of CUP. The external CCD camera takes a time-unsheared image of the dynamic scene. Unlike the previously used unconstrained algorithm, the proposed algorithm incorporates both spatial and intensity constraints based on the additional prior information provided by the external CCD camera. First, a spatial mask is extracted from the time-unsheared image to define the zone of action. Next, an intensity threshold is determined based on the similarity between the temporally projected image of the reconstructed datacube and the time-unsheared image. Both simulation and experimental studies show that the SIC reconstruction improves the spatial resolution, contrast, and general quality of the reconstructed image.
Project description:Nanocrystallization is a well-known strategy to dramatically tune the properties of materials; however, the grain-size effect of graphene at the nanometer scale remains unknown experimentally because of the lack of nanocrystalline samples. Here we report an ultrafast growth of graphene films within a few seconds by quenching a hot metal foil in liquid carbon source. Using Pt foil and ethanol as examples, four kinds of nanocrystalline graphene films with average grain size of ~3.6, 5.8, 8.0, and 10.3?nm are synthesized. It is found that the effect of grain boundary becomes more pronounced at the nanometer scale. In comparison with pristine graphene, the 3.6?nm-grained film retains high strength (101?GPa) and Young's modulus (576?GPa), whereas the electrical conductivity is declined by over 100 times, showing semiconducting behavior with a bandgap of ~50?meV. This liquid-phase precursor quenching method opens possibilities for ultrafast synthesis of typical graphene materials and other two-dimensional nanocrystalline materials.
Project description:The capture of transient scenes at high imaging speed has been long sought by photographers, with early examples being the well known recording in 1878 of a horse in motion and the 1887 photograph of a supersonic bullet. However, not until the late twentieth century were breakthroughs achieved in demonstrating ultrahigh-speed imaging (more than 10(5) frames per second). In particular, the introduction of electronic imaging sensors based on the charge-coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) technology revolutionized high-speed photography, enabling acquisition rates of up to 10(7) frames per second. Despite these sensors' widespread impact, further increasing frame rates using CCD or CMOS technology is fundamentally limited by their on-chip storage and electronic readout speed. Here we demonstrate a two-dimensional dynamic imaging technique, compressed ultrafast photography (CUP), which can capture non-repetitive time-evolving events at up to 10(11) frames per second. Compared with existing ultrafast imaging techniques, CUP has the prominent advantage of measuring an x-y-t (x, y, spatial coordinates; t, time) scene with a single camera snapshot, thereby allowing observation of transient events with temporal resolution as tens of picoseconds. Furthermore, akin to traditional photography, CUP is receive-only, and so does not need the specialized active illumination required by other single-shot ultrafast imagers. As a result, CUP can image a variety of luminescent--such as fluorescent or bioluminescent--objects. Using CUP, we visualize four fundamental physical phenomena with single laser shots only: laser pulse reflection and refraction, photon racing in two media, and faster-than-light propagation of non-information (that is, motion that appears faster than the speed of light but cannot convey information). Given CUP's capability, we expect it to find widespread applications in both fundamental and applied sciences, including biomedical research.