Unknown

Dataset Information

0

Graphene oxide-silver nanocomposite as a promising biocidal agent against methicillin-resistant Staphylococcus aureus.


ABSTRACT:

Background

Methicillin-resistant Staphylococcus aureus (MRSA) has been responsible for serious hospital infections worldwide. Nanomaterials are an alternative to conventional antibiotic compounds, because bacteria are unlikely to develop microbial resistance against nanomaterials. In the past decade, graphene oxide (GO) has emerged as a material that is often used to support and stabilize silver nanoparticles (AgNPs) for the preparation of novel antibacterial nanocomposites. In this work, we report the synthesis of the graphene-oxide silver nanocomposite (GO-Ag) and its antibacterial activity against relevant microorganisms in medicine.

Materials and methods

GO-Ag nanocomposite was synthesized through the reduction of silver ions (Ag(+)) by sodium citrate in an aqueous GO dispersion, and was extensively characterized using ultraviolet-visible absorption spectroscopy, X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, and transmission electron microscopy. The antibacterial activity was evaluated by microdilution assays and time-kill experiments. The morphology of bacterial cells treated with GO-Ag was investigated via transmission electron microscopy.

Results

AgNPs were well distributed throughout GO sheets, with an average size of 9.4±2.8 nm. The GO-Ag nanocomposite exhibited an excellent antibacterial activity against methicillin-resistant S. aureus, Acinetobacter baumannii, Enterococcus faecalis, and Escherichia coli. All (100%) MRSA cells were inactivated after 4 hours of exposure to GO-Ag sheets. In addition, no toxicity was found for either pristine GO or bare AgNPs within the tested concentration range. Transmission electronic microscopy images offered insights into how GO-Ag nanosheets interacted with bacterial cells.

Conclusion

Our results indicate that the GO-Ag nanocomposite is a promising antibacterial agent against common nosocomial bacteria, particularly antibiotic-resistant MRSA. Morphological injuries on MRSA cells revealed a likely loss of viability as a result of the direct contact between bacteria and the GO-Ag sheets.

SUBMITTER: de Moraes AC 

PROVIDER: S-EPMC4636171 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Graphene oxide-silver nanocomposite as a promising biocidal agent against methicillin-resistant Staphylococcus aureus.

de Moraes Ana Carolina Mazarin AC   Lima Bruna Araujo BA   de Faria Andreia Fonseca AF   Brocchi Marcelo M   Alves Oswaldo Luiz OL  

International journal of nanomedicine 20151102


<h4>Background</h4>Methicillin-resistant Staphylococcus aureus (MRSA) has been responsible for serious hospital infections worldwide. Nanomaterials are an alternative to conventional antibiotic compounds, because bacteria are unlikely to develop microbial resistance against nanomaterials. In the past decade, graphene oxide (GO) has emerged as a material that is often used to support and stabilize silver nanoparticles (AgNPs) for the preparation of novel antibacterial nanocomposites. In this work  ...[more]

Similar Datasets

| S-EPMC7281119 | biostudies-literature
| S-EPMC3439993 | biostudies-literature
| S-EPMC7075295 | biostudies-literature
| S-EPMC7246690 | biostudies-literature
| S-EPMC7600712 | biostudies-literature
| S-EPMC8434351 | biostudies-literature
| S-EPMC6645293 | biostudies-literature
| S-EPMC4475277 | biostudies-literature
| S-EPMC8706362 | biostudies-literature
| S-EPMC5751152 | biostudies-literature