Unknown

Dataset Information

0

A Spacecraft Electrical Characteristics Multi-Label Classification Method Based on Off-Line FCM Clustering and On-Line WPSVM.


ABSTRACT: This paper proposes a novel multi-label classification method for resolving the spacecraft electrical characteristics problems which involve many unlabeled test data processing, high-dimensional features, long computing time and identification of slow rate. Firstly, both the fuzzy c-means (FCM) offline clustering and the principal component feature extraction algorithms are applied for the feature selection process. Secondly, the approximate weighted proximal support vector machine (WPSVM) online classification algorithms is used to reduce the feature dimension and further improve the rate of recognition for electrical characteristics spacecraft. Finally, the data capture contribution method by using thresholds is proposed to guarantee the validity and consistency of the data selection. The experimental results indicate that the method proposed can obtain better data features of the spacecraft electrical characteristics, improve the accuracy of identification and shorten the computing time effectively.

SUBMITTER: Li K 

PROVIDER: S-EPMC4636359 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Spacecraft Electrical Characteristics Multi-Label Classification Method Based on Off-Line FCM Clustering and On-Line WPSVM.

Li Ke K   Liu Yi Y   Wang Quanxin Q   Wu Yalei Y   Song Shimin S   Sun Yi Y   Liu Tengchong T   Wang Jun J   Li Yang Y   Du Shaoyi S  

PloS one 20151106 11


This paper proposes a novel multi-label classification method for resolving the spacecraft electrical characteristics problems which involve many unlabeled test data processing, high-dimensional features, long computing time and identification of slow rate. Firstly, both the fuzzy c-means (FCM) offline clustering and the principal component feature extraction algorithms are applied for the feature selection process. Secondly, the approximate weighted proximal support vector machine (WPSVM) onlin  ...[more]

Similar Datasets

| S-EPMC5423585 | biostudies-literature
2022-09-03 | GSE168264 | GEO
| S-EPMC9044368 | biostudies-literature
| S-EPMC9491696 | biostudies-literature
| S-EPMC7924502 | biostudies-literature
| S-EPMC8337005 | biostudies-literature
| S-EPMC7924696 | biostudies-literature
| S-EPMC3864256 | biostudies-literature
| S-EPMC2743671 | biostudies-literature
| S-EPMC7529316 | biostudies-literature