Unified understanding of superconductivity and Mott transition in alkali-doped fullerides from first principles.
Ontology highlight
ABSTRACT: Alkali-doped fullerides A 3C60 (A = K, Rb, Cs) are surprising materials where conventional phonon-mediated superconductivity and unconventional Mott physics meet, leading to a remarkable phase diagram as a function of volume per C60 molecule. We address these materials with a state-of-the-art calculation, where we construct a realistic low-energy model from first principles without using a priori information other than the crystal structure and solve it with an accurate many-body theory. Remarkably, our scheme comprehensively reproduces the experimental phase diagram including the low-spin Mott-insulating phase next to the superconducting phase. More remarkably, the critical temperatures T c's calculated from first principles quantitatively reproduce the experimental values. The driving force behind the surprising phase diagram of A 3C60 is a subtle competition between Hund's coupling and Jahn-Teller phonons, which leads to an effectively inverted Hund's coupling. Our results establish that the fullerides are the first members of a novel class of molecular superconductors in which the multiorbital electronic correlations and phonons cooperate to reach high T c s-wave superconductivity.
SUBMITTER: Nomura Y
PROVIDER: S-EPMC4643794 | biostudies-literature | 2015 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA