Unknown

Dataset Information

0

The metalloprotease-disintegrin ADAM8 contributes to temozolomide chemoresistance and enhanced invasiveness of human glioblastoma cells.


ABSTRACT:

Background

Despite multimodal treatment, glioblastoma (GBM) therapy with temozolomide (TMZ) remains inefficient due to chemoresistance. Matrix metalloproteinase (MMP) and a disintegrin and metalloprotease (ADAM), increased in GBM, could contribute to chemoresistance and TMZ-induced recurrence of glioblastoma.

Methods

TMZ inducibility of metalloproteases was determined in GBM cell lines, primary GBM cells, and tissues from GBM and recurrent GBM. TMZ sensitivity and invasiveness of GBM cells were assessed in the presence of the metalloprotease inhibitors batimastat (BB-94) and marimastat (BB-2516). Metalloprotease-dependent effects of TMZ on mitochondria and pAkt/phosphatidylinositol-3 kinase (PI3K) and phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) pathways were analyzed by fluorescence activated cell sorting, morphometry, and immunoblotting. Invasiveness of GBM cells was determined by Matrigel invasion assays. Potential metalloprotease substrates were identified by proteomics and tested for invasion using blocking antibodies.

Results

TMZ induces expression of MMP-1, -9, -14, and ADAM8 in GBM cells and in recurrent GBM tissues. BB-94, but not BB-2516 (ADAM8-sparing) increased TMZ sensitivity of TMZ-resistant and -nonresistant GBM cells with different O(6)-methylguanine-DNA methyltransferase states, suggesting that ADAM8 mediates chemoresistance, which was confirmed by ADAM8 knockdown, ADAM8 overexpression, or pharmacological inhibition of ADAM8. Levels of pAkt and pERK1/2 were increased in GBM cells and correlated with ADAM8 expression, cell survival, and invasiveness. Soluble hepatocyte growth factor (HGF) R/c-met and CD44 were identified as metalloprotease substrates in TMZ-treated GBM cells. Blocking of HGF R/c-met prevented TMZ-induced invasiveness.

Conclusions

ADAM8 causes TMZ resistance in GBM cells by enhancing pAkt/PI3K, pERK1/2, and cleavage of CD44 and HGF R/c-met. Specific ADAM8 inhibition can optimize TMZ chemotherapy of GBM in order to prevent formation of recurrent GBM in patients.

SUBMITTER: Dong F 

PROVIDER: S-EPMC4648299 | biostudies-literature | 2015 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

The metalloprotease-disintegrin ADAM8 contributes to temozolomide chemoresistance and enhanced invasiveness of human glioblastoma cells.

Dong Fangyong F   Eibach Michael M   Bartsch Jörg W JW   Dolga Amalia M AM   Schlomann Uwe U   Conrad Catharina C   Schieber Susanne S   Schilling Oliver O   Biniossek Martin L ML   Culmsee Carsten C   Strik Herwig H   Koller Garrit G   Carl Barbara B   Nimsky Christopher C  

Neuro-oncology 20150329 11


<h4>Background</h4>Despite multimodal treatment, glioblastoma (GBM) therapy with temozolomide (TMZ) remains inefficient due to chemoresistance. Matrix metalloproteinase (MMP) and a disintegrin and metalloprotease (ADAM), increased in GBM, could contribute to chemoresistance and TMZ-induced recurrence of glioblastoma.<h4>Methods</h4>TMZ inducibility of metalloproteases was determined in GBM cell lines, primary GBM cells, and tissues from GBM and recurrent GBM. TMZ sensitivity and invasiveness of  ...[more]

Similar Datasets

| S-EPMC8964949 | biostudies-literature
| S-EPMC6772711 | biostudies-literature
| S-EPMC7598052 | biostudies-literature
| S-EPMC8844449 | biostudies-literature
| S-EPMC7100932 | biostudies-literature
| S-EPMC3824522 | biostudies-literature
| S-EPMC5998973 | biostudies-literature
| S-EPMC4917210 | biostudies-literature
| S-EPMC5193021 | biostudies-literature
| S-EPMC6491393 | biostudies-literature