Unknown

Dataset Information

0

The sRNA NsiR4 is involved in nitrogen assimilation control in cyanobacteria by targeting glutamine synthetase inactivating factor IF7.


ABSTRACT: Glutamine synthetase (GS), a key enzyme in biological nitrogen assimilation, is regulated in multiple ways in response to varying nitrogen sources and levels. Here we show a small regulatory RNA, NsiR4 (nitrogen stress-induced RNA 4), which plays an important role in the regulation of GS in cyanobacteria. NsiR4 expression in the unicellular Synechocystis sp. PCC 6803 and in the filamentous, nitrogen-fixing Anabaena sp. PCC 7120 is stimulated through nitrogen limitation via NtcA, the global transcriptional regulator of genes involved in nitrogen metabolism. NsiR4 is widely conserved throughout the cyanobacterial phylum, suggesting a conserved function. In silico target prediction, transcriptome profiling on pulse overexpression, and site-directed mutagenesis experiments using a heterologous reporter system showed that NsiR4 interacts with the 5'UTR of gifA mRNA, which encodes glutamine synthetase inactivating factor (IF)7. In Synechocystis, we observed an inverse relationship between the levels of NsiR4 and the accumulation of IF7 in vivo. This NsiR4-dependent modulation of gifA (IF7) mRNA accumulation influenced the glutamine pool and thus [Formula: see text] assimilation via GS. As a second target, we identified ssr1528, a hitherto uncharacterized nitrogen-regulated gene. Competition experiments between WT and an ?nsiR4 KO mutant showed that the lack of NsiR4 led to decreased acclimation capabilities of Synechocystis toward oscillating nitrogen levels. These results suggest a role for NsiR4 in the regulation of nitrogen metabolism in cyanobacteria, especially for the adaptation to rapid changes in available nitrogen sources and concentrations. NsiR4 is, to our knowledge, the first identified bacterial sRNA regulating the primary assimilation of a macronutrient.

SUBMITTER: Klahn S 

PROVIDER: S-EPMC4653137 | biostudies-literature | 2015 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

The sRNA NsiR4 is involved in nitrogen assimilation control in cyanobacteria by targeting glutamine synthetase inactivating factor IF7.

Klähn Stephan S   Schaal Christoph C   Georg Jens J   Baumgartner Desirée D   Knippen Gernot G   Hagemann Martin M   Muro-Pastor Alicia M AM   Hess Wolfgang R WR  

Proceedings of the National Academy of Sciences of the United States of America 20151022 45


Glutamine synthetase (GS), a key enzyme in biological nitrogen assimilation, is regulated in multiple ways in response to varying nitrogen sources and levels. Here we show a small regulatory RNA, NsiR4 (nitrogen stress-induced RNA 4), which plays an important role in the regulation of GS in cyanobacteria. NsiR4 expression in the unicellular Synechocystis sp. PCC 6803 and in the filamentous, nitrogen-fixing Anabaena sp. PCC 7120 is stimulated through nitrogen limitation via NtcA, the global trans  ...[more]

Similar Datasets

2015-10-20 | GSE73840 | GEO
| S-EPMC9731577 | biostudies-literature
| S-EPMC205187 | biostudies-other
| S-EPMC6212724 | biostudies-literature
| S-EPMC5441914 | biostudies-literature
| S-EPMC8367978 | biostudies-literature
| S-EPMC8042125 | biostudies-literature
| S-EPMC99658 | biostudies-literature
| S-EPMC107004 | biostudies-literature
| S-EPMC10537745 | biostudies-literature